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“Autism” refers to a set of neurodevelopmen-
tal disorders that are characterized by
impaired social interaction, restricted commu-
nication, and repetitive, stereotypic behaviors.
The number of children reported as having
autism spectrum disorders (ASD) has risen
dramatically since the early 1990s. In the
United States, some of this increase is attrib-
utable to changes in diagnosis and reporting,
although this pattern is not uniform across all
states (Shattuck 2005). Symptoms of classic
autism do not typically become evident until
early childhood, but current evidence is con-
sistent with a pathogenic process originating
during fetal development (Arndt et al. 2005;
Hertz-Picciotto et al. 2006; Kemper and
Bauman 1998; Nelson et al. 2001).

Many of the hypotheses regarding ASD
pathogenesis involve a functional deficit
caused by alterations to specific brain struc-
tures occurring in utero during defined tem-
poral windows of vulnerability (Polleux and
Lauder 2004). The lesions in question might
result from genetic factors, environmental
insults, or a combination of the two. A variety
of lesions could give rise to a “final common
pathway” to autism; ASD as currently defined
may well include multiple disorders that have
not yet been successfully differentiated.

A large number of widely used agricul-
tural pesticides have known neurologic
effects (Weiss et al. 2004), raising the possi-
bility that gestational exposure to these com-
pounds could play an etiologic role in ASD
and related neurodevelopmental disorders.
Most compounds are prone to “drift,” and
detectable levels in air samples are often
measurable at locations beyond the site of
application for extended periods afterwards
(Kegley et al. 2003; Lee et al. 2002).
Elevated levels of agricultural pesticides in
household dust and their metabolites in
urine have been associated with residential
proximity to treated fields (Loewenherz et al.
1997; Lu et al. 2000; Simcox et al. 1995).

Studies of pediatric diseases and their asso-
ciations with residential proximity or parental
occupational exposure to pesticides have been
accumulating, most notably for cancer
(Birnbaum and Fenton 2002; Daniels et al.
1997; Feychting et al. 2001; Flower et al.
2004; Linet et al. 2003; Meinert et al. 2000;
Olshan et al. 2000; Reynolds et al. 2002;
Robison et al. 1995; Shannon 1998; Zahm
and Devesa 1995) and, more recently, neu-
rodevelopmental delay (Grandjean et al.
2005). Many environmental toxicants are con-
veyed transplacentally, and the blood–brain

barrier remains relatively permeable to many
of these compounds until well into the first
year of life (Andersen et al. 2000). In general,
experimental and epidemiologic evidence
regarding pesticides and pediatric neurodevel-
opment is strikingly lacking, despite consider-
able knowledge about pesticide toxicity
(particularly neurotoxicity) (Kamel and
Hoppin 2004; Weiss et al. 2004).

We evaluated a series of hypotheses
regarding an association between in utero resi-
dential “exposure” to specific agricultural pes-
ticides (that is, maternal residence in close
proximity to sites of application) and the
development of ASD by linking existing data-
bases using a retrospective case–control
design. This study was conducted as part of a
demonstration project of the utility of envi-
ronmental public health tracking, an initiative
funded by the Centers for Disease Control
and Prevention (McGeehin et al. 2004) to
generate clues for further etiologic study.

Materials and Methods

All data assembly and sampling protocols
were approved by the California Department
of Health Services Committee for the
Protection of Human Subjects before the
initiation of activities.

Study subjects. The study population
included 269,746 singletons born between
1 January 1996 and 31 December 1998 to
mothers residing in the 19 counties included
in the Sacramento River Valley and San
Joaquin River Valley air basins of California
(known together as the Central Valley)
(California Center for Health Statistics,
Sacramento: Birth Statistical Master Files,
unpublished data). Excluded from the study
population were infant deaths and multiple
births. Modestly elevated ASD risk has been
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noted among children born preterm (Larsson
et al. 2005); in this exploratory study, we
focused on ASD risk not mediated by this
phenomenon and excluded those born at < 37
weeks gestation or weighing < 2,500 g.
Children with ASD were identified from this
study population through electronic files of the
California Department of Developmental
Services (DDS) (California DDS, Sacramento,
CA, Client Development Evaluation
Reports, unpublished data), which operates a
statewide system of regional centers and
developmental centers that coordinate volun-
tary services for persons with autism, mental
retardation, and other developmental disabil-
ities. Children reported by DDS at any age
as receiving services for autism or with an
ASD diagnostic code (e.g., Diagnostic and
Statistical Manual of Mental Disorders,
4th ed., code 299.80) (American Psychiatric
Association 2000) were included in the
case group.

DDS eligibility is determined and services
are provided without regard to citizenship or
financial status. Although the system is used
widely across different socioeconomic levels
and racial and ethnic groups, disparities in
use may exist. Referrals come from pediatri-
cians, other clinicians, the educational sys-
tem, family members, and friends. DDS
creates an archive file of client development
evaluation reports (CDER) completed at the
regional centers and developmental centers. A
CDER is submitted when an individual has a
diagnosed developmental disability and has
met the eligibility requirements for active sta-
tus in the DDS system. Children who qualify
for services for conditions other than autism
but who have comorbid ASD may have a
diagnosis of ASD coded on their CDER
under “Mental Disorder.” Children with
milder forms of developmental disabilities,
including Asperger’s Syndrome and Pervasive
Developmental Disability–Not Otherwise
Specified (PDD-NOS), may not meet eligibil-
ity requirements for active status. The CDER
is updated periodically as client status changes.

Linkage of case subjects to birth records.
To identify DDS clients who were resident
births and to obtain street address at birth
and other demographic variables for analysis,
DDS electronic files were linked to live birth
vital records by staff of the California Center
for Autism and Developmental Disabilities
Research and Epidemiology (Richmond,
CA). Matching algorithms were based on
identifying variables including child’s first
name, last name, date of birth, sex, and
mother’s first name, last name, and date of
birth. We estimate an incorrect matching
rate of < 0.2% using these procedures
(Grether J, unpublished data).

Control subjects. For each case, we
selected 15 control births from the study

population from among full-term, normal-
weight live births who were not identified as
cases using an incidence density sampling
design with date of last menstrual period
(LMP) as the time variable. This procedure
permitted control for the time-varying preva-
lence of exposure that could, uncontrolled,
result in confounding, and maximized the
information obtained from the cohort for
estimation of disease rate parameters. For the
small number of records for which gesta-
tional age was missing, we imputed this
number based on the date of birth and LMP.
Records for which the (recorded or imputed)
gestational age was incompatible with the
recorded birth weight using an established
algorithm (Alexander et al. 1996) were
excluded before sample selection.

Regional center as a covariate. DDS
regional center (RC) catchment areas are geo-
graphically defined, and services are provided
based on residence address. Six RCs serve the
19 counties included in this study; because of
migration between birth and age of diagnosis,
19 RCs contributed diagnoses to cases in the
study population. Statewide guidelines are
provided for eligibility determination and
provision of services, but RCs have flexibility
in application of guidelines. To adjust for dif-
ferences among RCs, we included a variable
for cases indicating RC of enrollment when
eligibility based on autism was established.
For control subjects, RC assignments were
simulated under the assumption that migra-
tory patterns during the first few years of life
would be identical between case and control
populations. For each RC, we calculated out-
and in-migration between birth and CDER
diagnosis date for ASD cases, and then ran-
domly selected an identical proportion of
controls born in each RC catchment area and
reassigned them accordingly. Later when
choices had been made regarding the analytic
model, we repeated the random assignment
100 times to assess the sensitivity of our find-
ings to this process.

Pesticide data. We obtained records from
the California Department of Pesticide
Regulation (DPR 2000) describing agricul-
tural pesticide applications within the study
area occurring after 1 January 1995 (for the
4 years after this date, the total number of
applications was 6,710,727). These data are
submitted to DPR by county agriculture
commissioners and are spatially referenced to
public land survey sections (PLSS); we con-
ducted cleaning and correction algorithms fol-
lowing the protocol of Gunier et al. (2001).
Following the method of Rull and Ritz
(2003), we spatially refined these data through
the overlay of matched land-use survey field
polygons provided by the California
Department of Water Resources (DWR
2005). Briefly, we matched each DPR record

to the land-use survey conducted closest in
time to the application date (DWR surveys
are conducted roughly every 5–7 years in each
California county). Matching is based on
location and crop type as specified in both the
DPR and DWR records, with frequently
rotated crops grouped together in a single cat-
egory. Of the total applications recorded by
the DPR spanning 1995–1998, 73.4% were
successfully linked based on specific crop
identifiers, whereas an additional 18.0% were
linked under the “frequently rotated” category.
For the remaining 8.5% of applications, no
field polygon in the specified PLSS grid was
identified with the appropriate crop identifier,
so no spatial refinement was possible (percent-
ages do not sum to 100 due to rounding).

Data linkage. Exposure assignment
incorporated both spatial and temporal
dimensions. Residence addresses at time of
birth were standardized and verified using
ZP4 (Semaphore Corporation, Pismo Beach,
CA) and subsequently geocoded using
ArcGIS version 9.0 (ESRI, Redlands, CA).
Geocoded address coordinates were taken
from the first successful match of the follow-
ing four street centerline data sets (in order):
Geographic Data Technology (GDT)
Dynamap/2000 version 13 (TeleAtlas,
Lebanon, NH), Navigation Technologies
NAVSTREETS (NAVTEQ, Chicago, IL),
TeleAtlas MultiNet streets (TeleAtlas), and
the U.S. Census Bureau TIGER 2000 sys-
tem (Washington, DC). For each street cen-
terline data set, residences were geocoded by
matching to street address attributes (e.g.,
prefix, number, name) and the ZIP code,
or, if the ZIP code was unsuccessful, the
city name.

We determined temporal proximity by
comparing dates of applications recorded in
the DPR data set (which are believed to be
accurate within a few days) to the stage of
gestation (quantified as the number of days
postfertilization) determined from LMP.
Fertilization was assumed to occur 14 days
following the LMP date and labeled day
zero. LMP is therefore day –14, and the
expected delivery date for a full-term preg-
nancy day 266.

To assign exposure, we developed a cus-
tom Java (Sun Microsystems, Santa Clara,
CA) application using the ArcSDE Java
Application Program Interface version 9.0
(ESRI, Redlands, CA) and the GeoTools Java
GIS Toolkit, version 2.0 (open source, http://
geotools.codehaus.org/). We calculated the
sums that combined the numbers of pounds
of pesticides occurring during any temporal
window (defined below) within the specified
radius of a geocoded point, intersecting DWR
land-use or PLSS polygons with the buffer,
and assuming homogeneous distribution of
pesticides within each of these polygons.
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Analytic strategy. The infrastructure
developed for this project allowed us to
simultaneously test large numbers of specific
hypotheses. To avoid the pitfalls associated
with multiple statistical comparisons, we
constructed a multistage analytic strategy.
First we selected pesticide compounds based
on plausibility of biological connection to
autism, physical characteristics, and commu-
nity concerns. Then we operationalized the
hypotheses of association between exposure
and outcome based on known embryologic
phenomena. We then conducted a priori
data analysis with primary attention to the
effects of multiple testing, followed by a pos-
teriori data analysis for refinement of
hypotheses and guidance of future work.

Selection of pesticide compounds. Input
was obtained through a series of participa-
tory meetings with representatives of com-
munity-based, local governmental, and
nongovernmental organizations. Two com-
plimentary and overlapping sets of criteria
were developed to select pesticides of inter-
est: a) compounds causing substantial com-
munity concern, and b) compounds most
likely to have spatially and temporally resolv-
able health effects based on their toxicologic
and physical properties. Community con-
cerns included pesticides accounting for par-
ticularly large proportions of total
agricultural applications in the state; pesti-
cides associated with well-known involuntary
exposures due to incidents of community
poisonings; and fumigant pesticides, which
are used in particularly large quantities dur-
ing a single application. To address the sec-
ond set of criteria, we assembled a list of 54
high-use pesticides known to be neurotoxi-
cants, reproductive toxicants, developmental
toxicants, and/or endocrine disruptors
(Green Media Toolshed 2006). Following
previously developed protocols (Bennett
et al. 1999; MacLeod et al. 2004), we ranked
compounds from the list by a local exposure
index, which is the environmental persis-
tence weighted by the fraction of deposition
expected to occur near to the application
site. The resulting individual compounds
and groups of compounds are shown in
Appendix 1.

Operationalization of hypotheses. We
operationalized each single hypothesis as any
unique combination of a) pesticide com-
pounds or groups of compounds, b) mater-
nal residential distance from application site,
and c) temporal period during pregnancy.
Spatial parameters were based on the
assumption that substantial population expo-
sure due to pesticide drift was unlikely at dis-
tances > 1,000 m and may be restricted to
distances smaller than a few hundred meters
(Kegley et al. 2003). We tested hypotheses
using distances of 250, 500, and 750 m for

both individual and grouped compounds.
For grouped compounds, we additionally
tested hypotheses using a 1,000-m radius.

Temporal parameters were chosen to
reflect the hypotheses that the periods imme-
diately before and during central nervous
system (CNS) embryogenesis, neural tube
closure, and entire gestation could represent
critical windows for exposure. We defined
these respective periods as follows: CNS:
days –7 through 49; neural tube: days –4
through 24; and gestation: day –14 through
date of birth.

A priori analysis. For each parameter
combination, we considered only instances
for which a minimum of five case or control
subjects per quartile of nonzero exposure
were available. We imposed the following
standards for consideration of any associa-
tions between pesticide exposures and ASD
as significant. 

The fourth nonzero quartile coefficient
must be significantly greater than zero, with
p ≤ αadj using the Holm algorithm (Aickin
and Gensler 1996) and incorporating the

formula by Dunn-Sidák (Nichols and
Hayasaka 2003). Under this algorithm, the
adjusted alpha becomes

, [1]

where α is 0.05 and n is the rank (1,2,3,…)
in p-value, beginning with the smallest.

Further, we graphically depicted the dis-
tribution of p-values, allowing the data
themselves to suggest a logical cut point for
the exclusion of associations likely to be
attributable to multiple testing.

For screening purposes, we employed a
conditional logistic regression model (using
LMP date to define strata for case–control
matching) that controlled for maternal
race/ethnicity, maternal education (classified
as elementary, some high school, high school
graduate, some college, and college graduate),
and RC of diagnosis (actual for cases and
imputed for controls). For exposure, the ref-
erence category was “none,” with separate
coefficients for each of the four nonzero quar-
tiles of pesticides, in pounds. All variables in

α αadj
n

= − −( )1 1
1/

Roberts et al.

1484 VOLUME 115 | NUMBER 10 | October 2007 • Environmental Health Perspectives

Table 1. Demographic characteristics of ASD cases and controls born in California Central Valley coun-
ties, 1996–1998.

Percent of cases Percent of controls Chi-square
Variable (n = 465) (n = 6,975) p-value

Sex of child < 0.0001
Male 85.2 51.4
Female 14.8 48.6

Maternal age (years) < 0.0001
< 20 8.4 14.5
20–24 24.1 26.6
25–29 25.6 27.2
30–34 23.4 20.2
35–39 15.9 9.3
≥ 40 2.6 2.3

Maternal race/ethnicity 0.01
Non-Hispanic white 50.8 44.1
Non-Hispanic black 7.1 6.0
Native American 0.4 0.9
Asian 9.7 8.7
Hispanic 31.2 39.6
Othera 0.9 0.7

Maternal education < 0.0001
Elementary 4.3 13.0
Some high school 12.5 19.1
High school diploma 33.1 31.6
Some college 28.2 21.8
College degree 20.4 13.3

RC of diagnosis (imputed if control) 0.07
361/Golden Gate 0.9 0.5
362/San Diego 0.9 0.7
363/Far Northern 6.5 7.6
364/Alta California 25.8 25.8
365/San Andreas 0.2 0.3
367/Central Valley 16.3 21.2
369/Inland 0.2 0.4
371/North Bay 8.4 5.2
372/Kern 12.5 11.7
374/South Central LA 0.4 0.3
375/Harbor 1.1 0.5
377/Valley Mountain 25.2 23.7
999/Otherb 1.7 2.2

aIncludes Pacific Islander and those recorded as other. bIncludes 360/Lanterman, 366/Tri-Counties, 370/Redwood Coast,
376/Westside, 378/North LA County, 379/San Gabriel/Pomona, 368/Orange County, and 380/East Bay.



the model were considered categorical, mean-
ing that no linearity of effects was assumed.

A posteriori analysis. Further analysis was
restricted to a priori combinations of para-
meters demonstrating significant associations
with risk of ASD using the above criteria.
We adjusted temporal parameters by making
them an 8-week moving window extending
from 300 days before to 300 days after the
estimated date of conception. This yielded
an “optimal” parameter combination that we
could use to assess model sensitivity and to
characterize the dose–response relationship
between pesticide applications and ASD risk.
For the latter, we estimated a LOESS function
of pesticide applications (in pounds) following
the methods recommended by Figueiras and
Cadarso-Suárez (2001). Optimal span for
the LOESS function was chosen as that
which yielded the minimum value for
Akaike’s Information Criterion (Akaike
1973). The dose–response analysis was con-
ducted using the gam package developed by
Hastie (2006) for use in the R programming
language version 2.3.1 (R Development
Core Team 2006); all other analysis was con-
ducted using SAS version 9.2 (SAS Institute
Inc., Cary, NC).

Results

Of the original 269,746 singleton births, we
were able to geocode 94.6%, with only negli-
gible differences in this rate between case and
control subgroups. A further 4.6% of these
records were excluded because estimated ges-
tational age was incompatible with birth
weight. From the remaining births, we iden-
tified 465 ASD cases plus 6,975 matched
controls. ASD cases were 85.2% male; for
controls this proportion was 51.4% (further
information on demographic characteristics
is shown in Table 1). Eight cases and 100
controls had missing data for at least one
covariate of interest; in nearly all instances
this covariate was maternal education. For

each regression model, only subjects with
complete information for all necessary
covariates were included.

A priori analysis. A total of 249 combi-
nations of compounds, buffer radii, and tem-
poral periods met the requirement of five
exposed cases and controls per cell. The coef-
ficients comparing the fourth nonzero quar-
tile of exposure to the reference category are
presented for the eight combinations where
the p-value was < 0.05 (the unadjusted α) in
Table 2.

Regardless of buffer radius, all fourth
nonzero quartile coefficients meeting our
numeric criterion for significance adjusted
for multiple testing were for the category of
organochlorine pesticides with applications
occurring during the CNS period; further-
more, only regressions with this com-
pound–temporal period combination yielded
p-values that met this criterion. Generally,
these coefficients had p-values an order of
magnitude smaller than those for the next
most significant coefficients.

The p-values and fourth nonzero quartile
coefficients are plotted in Figure 1. As
expected because of multiple testing, most of
these coefficients are randomly distributed
around zero, with a few having p-values close
to 0.05. The coefficients for organochlorine
exposure during the CNS period, in con-
trast, have p-values substantially smaller than
their nearest neighbors on the graph and are
consistently positive.

Organochlorine pesticides were found to
be associated with ASD regardless of the
buffer radius used. The effect becomes
monotonically smaller as the radius gets
larger; when the buffer radius is extended to
1,750 m, the fourth nonzero quartile odds
ratio (OR) finally becomes nonsignificant
(p > 0.05; data not shown). For the a posteriori
analysis, we selected the radius of 500 m,
which was the smallest for which there was at
least one case for each exposure category.

A posteriori analysis. Only organochlo-
rine compounds met the criteria for inclu-
sion in a posteriori analyses. Using a 500-m
radius around residential locations, we
allowed the 8-week temporal window to be
centered anywhere between 300 days before
and 300 days following estimated date of
conception. Although significant coefficients
(α = 0.05) were found for alternative time
periods and among nonzero quartiles besides
the fourth, these are dwarfed in magnitude
and significance by those occurring during
the first trimester of gestation among the
highest quartile of exposure (Figure 2).
Shifting the temporal window so that it
starts just following neural tube closure (day
26) yielded the largest fourth nonzero quar-
tile OR = 7.6 [95% confidence interval (CI),
3.1–18.6]. ORs from regression modeling
using both a priori and a posteriori time peri-
ods for the organochlorine category of pesti-
cides are presented in Table 3.

In the study area, dicofol and endosulfan
accounted for > 98% (by poundage) of the
organochlorines applied. During the tempo-
ral period identified through the a posteriori
analysis (i.e., days 26–81), 88 subjects
resided within 500 m of a dicofol application
and 27 within 500 m of an endosulfan appli-
cation. Because of these small numbers, a full
set of ORs could not be calculated separately
for each of the two compounds. Analysis
using radii > 500 m suggested magnitudes of
association slightly higher for endosulfan
than for dicofol; the association of each com-
pound with ASD appeared to be largely
independent of the other (data not shown).

Our initial model controlled for maternal
race and ethnicity, education, and RC of
diagnosis (recorded or imputed). To assess
model sensitivity, we employed the a posteri-
ori time window and the 500-m buffer and

Agricultural pesticide applications and autism
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Table 2. Coefficients for ASD risk comparing the fourth nonzero quartile of exposure to no exposurea

among children born in selected California counties, 1996–1998.b

Temporal window Buffer radius (m) Coefficient p-Value Adjusted alphac

Bifenthrin
Gestation 250 1.570 0.0485 0.0047

Organochlorines
CNS 250 2.068 0.0011* 0.0500
CNS 500 1.452 0.0025* 0.0253
CNS 750 1.178 0.0062* 0.0170
CNS 1,000 1.031 0.0064* 0.0127
Gestation 500 0.692 0.0249 0.0085

Organophosphates
Gestation 250 0.462 0.0418 0.0057

Trifluralin
Gestation 750 –0.839 0.0459 0.0051

Only coefficients for which a minimum of 20 subjects had nonzero exposure and p ≤ 0.05 are shown.
aControlling for maternal education, maternal race/ethnicity, and RC of diagnosis (imputed for controls). bFour hundred
sixty-five cases and 6,975 controls matched by LMP date, analyzed by conditional logistic regression. cUsing the Holm
algorithm and the formula of Dunn-Sidák (see “A priori analysis” in “Results”). *Indicates p ≤ adjusted alpha.

Figure 1. Coefficients for ASD risk comparing the
fourth nonzero quartile of exposure to no exposure
among children born in selected California counties,
1996–1998. Only coefficients for which a minimum of
20 subjects had nonzero exposure are shown.
Model controls for maternal education, maternal
race/ethnicity, and RC of diagnosis (imputed for con-
trols). Open circles represent coefficients for
organochlorine pesticides applied during the CNS
period; closed circles represent all others.

2

1

0

–1

–2

1.000 0.100 0.010 0.001

p-Value (logarithmic scale)

4t
h-

qu
ar

til
e 

co
ef

fic
ie

nt



investigated models using no covariates, our
original covariates plus maternal age and
child sex, and various combinations of these.
ORs were not significantly altered under any
model, although we did observe some atten-
uation of the association when sex was
included in the model. Given the observed
sex ratio among cases and our low exposure
prevalence (1.5%), nearly all exposed cases
were male, so this attenuation should not
necessarily be construed as evidence for con-
founding or effect modification by sex.
Inclusion of covariates besides sex nonsignifi-
cantly increased, rather than decreased, the
observed association. Choice of the initial
covariates plus sex in the model yielded a
fourth nonzero quartile OR of 6.1 (95% CI,
2.4–15.3). Repetition of the simulated RC
assignment for controls 100 times yielded a
median estimate for this number of 6.1
(95% CI, 2.4–15.5), minimum 5.8 (95%
CI, 2.3–14.6), and maximum 6.7 (95% CI,
2.6–17.2). 

Characterization of the dose–response
relationship between organochlorine pesti-
cide applications and ASD risk is shown in
Figure 3. Risk appears to increase monotoni-
cally up to the application amount of
approximately 22 lb during the 8-week
period with the highest OR determined
a posteriori. This poundage is equivalent to
the 87th percentile for the nonzero applica-
tions in the sample; beyond this magnitude
of application, data are too sparse to allow
for the calculation of risk, as evidenced by
the widening of CIs and the attenuation of
the OR back to the null.

Discussion

The objective of this study was to systemati-
cally explore the general hypothesis that resi-
dential proximity to agricultural pesticide
applications during pregnancy could be asso-
ciated with ASD in offspring. By separately
considering the parameters identifying
a) compounds and compound groupings,
b) spatial proximity, and c) temporal win-
dows, we tested 249 hypotheses that met our
predetermined criteria. Application of a pri-
ori analytic standards to reduce the statistical
problems associated with testing and inter-
preting this large number of hypotheses led
us to dismiss nearly all of these hypotheses.
Statistical approaches (Aickin and Gensler
1996; Nichols and Hayasaka 2003) and
visual inspection concurred that the associa-
tion between organochlorine pesticide appli-
cations immediately before and during the
period of CNS embryogenesis and ASD risk
merited further investigation. This associa-
tion was strongest for residences closest to
pesticide applications and was attenuated
with increasing distance. A posteriori analysis
indicated that the association was strongest,
in these data, among those residing near the
highest nonzero quartile of pesticide applied
during the 8 weeks immediately following
cranial neural tube closure. The magnitude
of this association was substantially larger
than any we could generate through addi-
tional testing using alternative time periods

and/or quartiles of pesticide applications. We
adopted as an a posteriori hypothesis that
these 8 weeks reflect the period of actual
maximum embryonic vulnerability to the
organochlorine pesticides. Findings were
insensitive to choices of covariates available
for our exploratory model, although the
inclusion of sex as a covariate attenuated the
association slightly. Within the limits of our
data, ASD risk increased monotonically with
the amount of organochlorine applications
during this a posteriori time period.

Organochlorine pesticides. Organochlorines
include a chemically diverse group of
halobenzene-derivative compounds used
mostly as insecticides; in the study area,
nearly all of the pesticide applied in this class
was dicofol or endosulfan, both of which
were used on cotton, fruits, vegetables,
beans, and nuts.

In general, halobenzene derivatives are
metabolized through the cytochrome P450
system in humans (Rietjens et al. 1997).
Dicofol is chemically similar to dichloro-
diphenyltrichloroethane (DDT), the differ-
ence being that dicofol possesses a hydroxy
moiety on one of its two aliphatic carbon
atoms. Dicofol is not metabolized to
dichlorodiphenyldichloroethylene (DDE), is
cleared from the body more quickly, and
bioaccumulates less than DDT (U.S.
Environmental Protection Agency 1998).
Following oral dosage in studies with rats and
mice, peak serum concentrations are reached
within 24–48 hr, with most of the compound
cleared from the body within 8 days
(EXTOXNET 1996a). Environmentally,
dicofol’s geographic and temporal distribution
follows the patterns of its application because
of its relative solubility, generally being
detectable in field runoff only during seasons
of field applications (Domagalski 1996).

In rats, endosulfan is converted by the
liver after oral administration to endosulfan
sulfate and endosulfan diol; peak serum con-
centrations are reached within hours and
elimination achieved within days (Agency for
Toxic Substances and Disease Registry 2000;
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Figure 2. ORs (solid lines) and lower 95% confi-
dence limits (dotted lines) for ASD comparing
nonzero quartiles of organochlorine pesticide
applications within 500 m to no applications for
overlapping 8-week temporal windows. Models
control for maternal education, maternal race/
ethnicity, and RC of diagnosis (imputed for con-
trols). x-Axis is the date in the center of each tem-
poral window relative to fertilization date; shading
indicates clinical first trimester; gaps indicate no
ASD cases occurred for that category.
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Table 3. Adjusted ORsa (95% CIs) for ASD among children born in selected California counties during
1996–1998, by nonzero quartile of organochlorine pesticides applied within 500 m of residence during vari-
ous periods of gestation.b

Neural tube CNS Gestation A posteriori
(4 days pre- to 24 (7 days pre- to 49 (14 days pre- (26–81 days

days postfertilization) days postfertilization) fertilization to DOB) postfertilization)

Nonzero quartilec of pounds applied (reference = 0)
First 1.0 (0.1–7.8) 0.6 (0.1–4.3) 1.2 (0.6–2.5) 0.6 (0.1–4.3)
Second 1.2 (0.2–9.9) 1.6 (0.4–7.1) 0.8 (0.3–1.9) 0.8 (0.1–6.3)
Third 2.6 (0.6–11.9) 2.4 (0.7–8.2) 1.0 (0.5–2.2) 2.1 (0.6–7.3)
Fourth 3.5 (1.0–12.5) 4.2 (1.7–10.9)* 1.8 (1.0–3.3) 7.6 (3.1–18.6)*

DOB, date of birth.
aAdjusted for maternal education, maternal race/ethnicity, and RC of diagnosis (imputed if control). b465 cases and 6,975
controls matched by LMP date, analyzed by conditional logistic regression. c25th, 50th, and 75th percentile cut points (in
pounds) for neural tube period were 0.1, 1.6, and 5.2; for CNS, 0.3, 1.9, and 8.4; for gestation, 0.3, 2.9, and 12.0; for a posteriori
0.3, 1.8, 10.1, respectively. *p ≤ 0.05; 



Chan and Mohd 2005; Chan et al. 2005). In
humans, the diol compound in particular has
been detected in both placenta and neonatal
cord blood (Cerillo et al. 2005). Less soluble
than dicofol, endosulfan breaks down in soil
and water over periods of weeks to months
(EXTOXNET 1996b).

Biological activities in humans. Generally
speaking, the brain has not been highlighted
as the primary target organ for the toxicity of
either dicofol or endosulfan. The latter com-
pound has been noted to have estrogenic
effects as well as some effects on the thyroid
gland (Schantz and Widholm 2001; Soto
et al. 1994), which may be relevant to con-
cerns about the role of the fetal hormonal
milieu in ASD pathogenesis (Baron-Cohen
et al. 2005). Sexual differentiation of brain
structures in higher mammals occurs during
the fetal period (weeks 9–38) (Tsuruo 2005),
and aromatase, the enzyme that converts
androgens into estrogen, is expressed by
nerve cells localized in specific brain struc-
tures during this period.

Both dicofol and endosulfan noncompet-
itively bind gamma amino-butyric acid
(GABA) receptor–mediated chloride ion
channels in nerve cells (Sunol et al. 1998).
GABA-mediated neurotransmission is
known to play important roles in gestational
brain development, and the theory that
altered GABA metabolism could play a role
in ASD has been advanced (Cohen 2001).
GABA is a neurotransmitter largely unique
to interneurons, and GABA-mediated activ-
ity regulates cell migration, proliferation,
synaptogenesis, and, by extension, the overall
patterning of neural networks (Herlenius
and Lagercrantz 2004). Mice with abnormal
genes for glutamic acid decarboxylase, which
is essential for GABA synthesis, develop
epilepsy, abnormal neural activity, and
increased anxiety-like behavior. Different
forms of this enzyme appear sequentially
throughout development, which is thought

to imply the existence of multiple distinct
functions for GABA as a neurotransmitter
during different periods (Varju et al. 2001).

Implications for public health. Because this
is the first study to explore whether risk of
ASD is associated with residential exposure to
organochlorine pesticides at drift concentra-
tions, our results require replication in further
studies and should be treated with caution. In
particular, we want to draw the reader’s atten-
tion to the small numbers of subjects classified
as “exposed” under our model that generated
the largest magnitude of ASD risk (a 500-m
distance between field and residence and the
a posteriori temporal window). Using this
model, a total of 113 case and control subjects
were connected with pesticide applications
within the spatial–temporal window, with
29 subjects (8 cases) in the fourth nonzero
quartile of exposure.

Among control subjects, the prevalence
of our a posteriori–defined exposure was
14.3/1,000 births in the Central Valley
region. Assuming a baseline risk for ASD of

6.5/1,000 births (Bertrand et al. 2001;
Chakrabarti and Fombonne 2001), the OR
of 6.1 suggests a putative population attrib-
utable risk on the order of 7% for births to
Central Valley residents. This calculation
assumes that the relationship between expo-
sure and outcome is causal and considers
only exposure to drift from agricultural
applications. Associations of ASD with expo-
sure from other sources could not be consid-
ered using the present study design.

To our knowledge, neither dicofol nor
endosulfan are used in household products
or are used in any quantities outside of the
commercial agricultural setting. Residues of
both compounds are commonly detected in
a wide variety of foods, however (Groth et al.
2000), as are those of persistent organochlo-
rine compounds no longer in use as pesti-
cides (Schafer and Kegley 2002). Both
compounds have structural similarities with
relatively common toxic contaminants such
as hexachlorobenzene and polychlorinated
biphenyls. Most chlorinated aromatic ring
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Figure 3. Dose–response curve for ASD risk with
organochlorine pesticides applied within 500 m of
residence during a posteriori temporal period
(26–81 days postfertilization), controlling for mater-
nal education, maternal race/ethnicity, RC of diag-
nosis (imputed for controls), and sex of child. Plus
signs indicate data points from which curves have
been calculated. Solid line, OR estimate; dotted
lines, 95% confidence limits.
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Appendix 1. Pesticide compounds and categories of compounds
selected for hypothesis testing.

The following pesticide compounds and categories of compounds were selected from
California DPR Pesticide Use Reports (2000) for hypothesis testing. Compounds in a sin-
gle functional or chemical category were grouped together for hypothesis testing purposes;
individual compounds were considered on their own regardless of whether they previously
had been included in a group category.

Functional and chemical categories.a

• Cholinesterase inhibitors (149 entries, including phosmet, malathion, ethephon, and
thiobencarb)

• Copper-containing compounds (45 entries, including hydroxides, sulfates, ammonium car-
bonates, and oxide)

• Fumigants (37 entries, including chloropicrin, methyl bromide, 1,3-dichloropropene,
metam-sodium, metam-potassium, and sulfuryl fluoride)

• Avermectins (4 entries, including avermectin, emamectin, benzoate, and fipronil)
• Halogenated organicsb (43 entries, including methyl bromide and 1,3-dichloropropene)
• N-methyl carbamates (29 entries, including carbamyl, thiodicarb, carbofuran, methomyl,

and aldicarb)
• Organochlorinesb (40 entries, including dicofol, endosulfan, and dienochlor)
• Organophosphates (112 entries, including malathion, phosmet, chlorpyrifos, and ethephon)
• Pyrethroids (35 entries, including permethrin, cypermethrin, fenvalerate, cyfluthrin, esfen-

valerate, and bifenthrin)
• Thiocarbamates [12 entries, including molinate, thiobencarb, EPTC (ethyl dipropylthio-

carbamate), and pebulate]

Individual compounds.

1,3-Dichloropropene Bromacil acid Bifenthrin
Chloropicrin Chlorpyrifos Copper sulfates
Cypermethrin Dazomet Diuron
Fenarimol Glyphosate Metam-sodium
Methyl bromide Molinate Myclobutanil
Norflurazon Oxadiazon Paraquat
Trifluralin
aCategories may overlap and/or include compounds also tested individually. bSmall chlorinated molecules
(e.g., 1,3-dichloropropene) and chlorinated benzenes are included as halogenated organics; polycyclic
chlorinated compounds are included as organochlorines.



compounds are substantially more persistent
in the environment and in human tissues
than dicofol and endosulfan. The ability to
detect associations between putative pesticide
exposure due to agricultural drift and ASD
risk in the present analysis may have been
augmented by the presence of the com-
pounds in relatively defined spatial and tem-
poral windows.

The availability of pesticide application
data in California has provided an opportu-
nity to detect a possible link, but replication
of our results and further evaluation in labo-
ratory studies are essential to determine
whether these compounds could be etiologi-
cally related to the occurrence of ASDs in
some children. In this context, it may be rel-
evant to note that the total applied poundage
of endosulfan and dicofol decreased in
California by approximately one-half
between 1998 and 1999 but appears to have
remained steady since that time (Pesticide
Action Network of North America 2006).

Study strengths and limitations. One
strength of this study was the ability to locate
pesticide applications with relatively high
resolution in both space and time, which
allowed us to operationalize hypotheses refer-
ring to specific temporal periods of vulnera-
bility. We were able to use this and the large
number of compounds for which we had
data to characterize many associations, iden-
tifying those likely to arise through multiple
testing and contrasting those with associa-
tions that appeared more compelling. We
were able to meet many standards set for the
epidemiologic study of neurodevelopmental
effects of in utero chemical exposure (Amler
et al. 2006), particularly with regard to the
methodical definition and testing of plausi-
ble hypotheses a priori. Another strength is
that prior studies have demonstrated good
diagnostic validity for children reported by
DDS to have autism when electronic
statewide records are compared with data in
RC records (Grether J, personal communica-
tion) or results of standardized evaluations
conducted for specific studies (e.g., using the
Autism Diagnostic Interview–Revised and
the Autism Diagnostic Observation Scale)
(Hertz-Picciotto et al. 2006).

Misclassification of exposure is the pri-
mary limitation of this study. It has been
estimated that one in three women change
addresses during pregnancy (Canfield et al.
2006). Furthermore, we were unable to
assess time spent at home during the time
periods in question or the influence of wind
speed and direction on drift. Although it is
impossible to assess, it is likely that this mis-
classification is nonsystematic in nature; fur-
ther, the specificity of our exposure metric is
likely to decrease as larger buffer distances
between fields and residences are employed.

Little information was available to us
describing the mothers and children in the
sample other than basic demographic charac-
teristics, so we were unable to adjust for con-
founders potentially important to gestational
neurodevelopment, such as the use of prena-
tal vitamins (Shaw et al. 1995). Anecdotal
evidence suggests that mothers from a wide
variety of socioeconomic backgrounds and
occupations were represented in the
“exposed” categories, but we cannot dismiss
the possibility that these women may be dis-
proportionately employed in agriculture and
therefore subject to occupational exposures
to pesticides beyond drift concentrations.

ASD is relatively rare, and more mildly
affected children may be less represented in
our case group. The proportion of mothers
in the sample living in proximity to pesticide
applications during our specific time periods
of interest was small. This limited the num-
bers of people classified as exposed at any
particular level of pesticide compounds. As
mentioned above, for example, only 29 sub-
jects were classified in the fourth nonzero
quartile of exposure to organochlorines using
our a posteriori parameters. Of these, eight
subjects had ASD; although this is signifi-
cantly greater than the expected number
(1.8), the need for replication of these find-
ings in other, larger populations is clear.

Conclusions

We evaluated the overarching hypothesis that
maternal residence near agricultural pesticide
applications in California’s Central Valley
during defined time periods of gestation
could be associated with ASD among chil-
dren. We employed a staged analytic strategy
designed to exclude associations due to multi-
ple testing using a priori criteria. Risk for
ASD was consistently associated with residen-
tial proximity to organochlorine pesticide
applications occurring around the period of
CNS embryogenesis; this association
appeared to increase with dose and was atten-
uated with increasing distance of residence
from the field site. These findings suggest
that the possibility of a connection between
gestational exposure to organochlorine pesti-
cides and ASD requires further study.
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