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Although biomonitoring has been used in many occupational and environmental health and 
exposure studies, we are only beginning to understand the complexities and uncertainties involved 
with the biomonitoring process-from study design, to sample collection, to chemical analysis- 
and with interpreting the resulting data. We present an overview of concepts that should be con- 
sidered when using biomonitoring or biomonitoring data, assess the current status of 
biomonitoring, and detail potential advancements in the field that may improve our ability to both 
collect and interpret biomonitoring data. We discuss issues such as the appropriateness of biomoni- 
toring for a given study, the sampling time frame, temporal variability in biological measurements 
to nonpersistent chemicals, and the complex issues surrounding data interpretation. In addition, we 
provide recommendations to improve the utility of biomonitoring in farmworker studies. 
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Biomonitoring of exposure to pesticides 
involves the measurement of a pesticide(s), its 
metabolite(s), or reaction product(s) in biolog- 
ical media such as urine, blood, or blood com- 
ponents and tissues (Anwar 1997; Barr et al. 
1999; He 1993, 1999). Although biomonitor- 
ing has been used in many occupational and 
environmental health and exposure studies 
(Acquavella et al. 2004; Arbuckle et al. 1999; 
Azaroff 1999; Coronado et al. 2004; Curl 
et al. 2002; Rees 1996; Shealy et al. 1996; 
Thompson et al. 2003), we are only beginning 
to understand the complexities and uncertain- 
ties involved with the biomonitoring process- 
including chemical toxicokinetics, matrix 
considerations, the appropriateness of the use 
of biomonitoring, study design, sample collec- 
tion, and chemical analysis-and with inter- 
preting the resulting data. We present an 
overview of concepts that should be considered 
when using biomonitoring or biomonitoring 
data, assess the current status of biomonitor- 
ing, and detail potential advances in the field 
that may improve our ability to both collect 
and interpret biomonitoring data. 

To begin, we define a few critical terms and 
phrases used in this article. "Internal dose" is 
defined as the amount of a chemical that is 
absorbed into the body after an exposure has 
occurred. Although we use the term "exposure" 
while discussing biomonitoring, biological 
measurements are not actually measuring expo- 
sure as cassically defined; they are used to assess 
exposure by estimating the internal dose. A 
"biomarker" is a chemical or metabolite meas- 
ured in biological matrices to assess exposure to 
a given chemical. "Biomarker measurements" 
and "biological measurements" may be used 

interchangeably in the text and are generally 
expressed on a whole-volume (e.g., micrograms 
per liter) or a creatinine-adjusted (micrograms 
per gram creatinine) basis. Given many 
assumptions about uptake, metabolism, steady- 
state excretion, and other factors, biomonitor- 
ing measurements or concentrations can be 
used to provide a rough estimate of an internal 
dose, typically expressed as micrograms per 
kilogram per day. "Excretion" is defined as the 
amount of a pesticide or metabolite eliminated 
from the body during a given time period; 
excretion should not be confused with the con- 
centration of a chemical in a single sample. A 
"biomolecular adduct" is defined as a covalent 
chemical link between the pesticide and pro- 
teins (e.g., hemoglobin, albumin, or butyryl or 
acetyl cholinesterase) or DNA. The terms 
"toxicokinetics" and "pharmacokinetics" are 
often used interchangeably to define the biolog- 
ical processing of a putative toxicant in the 
body; however, in this article, we use the term 
"toxicokinetics" to describe the behavior of a 
nonpersistent pesticide (NPP) in the body. 

General Toxicokinetics 
After exposure to an NPP, a portion of the 
pesticide may be absorbed into the blood- 
stream, distributed among the bodily tissues, 
metabolized, and/or excreted. These four 
complex steps of absorption, distribution, 
metabolism, and excretion (ADME) make up 
the toxicokinetic process after a pesticide con- 
tacts and enters the body (Klaassen 2001). To 
assess human exposure to a given pesticide, 
measurements of the pesticide can be made 
after the absorption step or during each subse- 
quent step of ADME. Biomonitoring is a 

measurement of the concentration or dose of 
the chemical during or after ADME, and its 
concentration level depends on the amount of 
the chemical that has been absorbed into the 
body, the toxicokinetics (ADME) of the 
chemical in that body, and the exposure sce- 
nario (including the time sequence of expo- 
sure and time since last exposure) (Barr et al. 
2005a). Biomonitoring data are typically inde- 
pendent of the pathway of exposure. They 
integrate exposures from different routes and 
reflect the amount of the chemical that is in 
the matrix sampled, which is some portion of 
what actually entered the body. However, 
how and where a pesticide is metabolized can 
affect the chemical measured and the timing 
the sampling should occur. With knowledge 
of the toxicokinetics, the internal dose can 
then be estimated by measuring the level of a 
chemical, its metabolite, or its reaction 
product (a chemical adduct) in a biological 
medium. The biomarker concentration is 
dependent upon the matrix and when in the 
ADME process the biological sample is taken, 
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ite of an NPP in the concentrations are usually about 3 orders 
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levels (Barr et al. 2002). Thus, if blood is used 
as a matrix, the sensitivity of the analytical 
method and the matrix volume available for 
analysis may become important. Blood can 
also be a valuable matrix for measuring bio- 
molecular adducts such as DNA, hemoglobin, 
or albumin adducts (Anwar 1997). Typically 
when blood is used for this type of measure- 
ment, special sample collection and/or prepa- 
ration procedures, such as washing red blood 
cells (hemoglobin adducts) or isolation of 
white cells (DNA adducts), may be required. 
However, if analytical requirements such as 
cost and speed of analysis are not critical 
issues, adduct measurements may provide 
more relevant information for relating to 
selected health end points such as cancer. 
Furthermore, adducts provide a longer win- 
dow for capturing an exposure because the 
lifetime of an adduct in the body is largely 
dependent upon the lifetime of the biomole- 
cule itself. For example, hemoglobin has a life- 
time of about 120 days; thus, a hemoglobin 
adduct could be measured weeks or months 
after an exposure has occurred. 

If blood testing is used, the stability of 
both the matrix and the target pesticide in the 
blood should be considered. If testing is not 

performed soon after sample collection, 
which is often the case, long-term storage of 
blood may be problematic, depending upon 
what form of blood is stored. Serum stores 
well at -70?C because it is low in protein and 
stays homogeneous. Plasma contains more 
proteins, which precipitate making plasma 
less homogeneous than serum. Whole blood 
does not store well because the cells tend to 
hemolyze. Also, many pesticides are reactive 
in blood; thus, the stability of the pesticide in 
this matrix under the desired storage condi- 
tions should be evaluated. 

Saliva has also been explored as a matrix 
for measuring selected nonpersistent chemi- 
cals, such as atrazine and diazinon (Borzelleca 
and Skalsky 1980; Denovan et al. 2000; Lu 
et al. 1997a, 1997b, 1998, 2003). Several ani- 
mal studies (Lu et al. 1997a, 1997b, 1998, 
2003) have shown that pesticides can be meas- 
ured in rat saliva. In these studies, atrazine, a 
member of triazine herbicide family, and 
diazinon, an organophosphorus pesticide, 
were measured in both saliva and plasma after 
controlled dose administration. The concen- 
trations of these two pesticides in saliva and 
plasma were significantly correlated, and this 
correspondence was not affected by factors 
such as salivary flow rates. Denovan et al. 
(2000) developed a saliva sampling protocol in 
which multiple daily saliva samples were col- 
lected from a cohort of herbicide applicators 
who sprayed atrazine and other triazine herbi- 
cides in the Ohio Valley. The results indicated 
that saliva can be used to assess atrazine expo- 
sure and its elimination in humans. Several 
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field studies are being conducted to evaluate 
saliva biomonitoring in humans. The existing 
data indicate that saliva levels can be consider- 
ably lower than blood levels of a pesticide, 
depending upon the degree of protein binding 
that may occur; thus, a very sensitive analytical 
technique is required. Further research on 
additional chemicals and the relation of these 
measurements to more commonly used 
approaches is required before this can be rou- 
tinely used for analysis. However, measure- 
ment of pesticides in saliva has great potential 
because of the convenience of sampling and 
analysis and the potential accuracy of salivary 
concentrations as an indicator of tissue avail- 
ability (Arcury et al. 2003; Quandt et al. 
2001). These advantages would allow 
researchers to routinely collect multiple saliva 
samples in 1 day for a period of time from a 
larger group of individuals, allowing better 
characterization of within- and between- 
worker variability, thereby reducing uncertain- 
ties in estimating daily exposure and absorbed 
dose. However, issues surrounding inter- and 
intraindividual variability in saliva flow rates, 
external contamination of samples, and small 
sample volumes must be addressed before 
saliva becomes a more viable matrix for farm- 
worker biomonitoring. 

Dermal Dosimetry versus 
Biomonitoring 
Two exposure measurement approaches- 
dosimetry and biomonitoring-have generally 
been used in farmworker exposure assessments. 
Each approach has advantages and disadvan- 
tages based on information provided, uncer- 
tainty, participant burden, and resource 
requirements. The first approach, which is 
described in more detail in the environmental 
workgroup report (Hoppin et al. 2006), typi- 
cally uses a set of dermal dosimeter measure- 
ments for an individual collected during a 
specific set of work activities. Collection of der- 
mal dosimeter and other environmental sam- 
ples have the advantage of providing 
information about specific routes of exposure 
and also provide exposure information that is 
directly related to the particular activity being 
monitored (Hoppin et al. 2006). However, 
these types of samples can measure only the 
potential exposure. A number of assumptions 
and empirical parameters about the transport 
of the target chemical onto and through the 
skin and lungs are required in order to estimate 
an internal dose. Unfortunately, those assump- 
tions and empirical parameters usually dictate 
the magnitude of the estimated internal dose. 

Biological measurements certainly can 
provide better evidence of the occurrence of 
exposure and the subsequent absorption that 
brings us closer to the more toxicologically 
relevant measure of internal dose. Nevertheless, 
biomonitoring is subject to toxicokinetic and 

exposure scenario uncertainties that may limit 
their use for dose estimation, assessment of 
exposure factors, and identification of routes 
of exposure. The biomarker accounts for all 
exposures and routes of exposure and can 
potentially provide information for dose esti- 
mation. A single measurement of urinary con- 
centration can provide an indication of the 
presence or absence of exposure, but the quan- 
titative calculation of absorbed dose is weak- 
ened by intraindividual genetic variability and 
the unknown excretion kinetics for individual 
pesticides under different routes of exposures 
(oral vs. dermal vs. inhalation). 

Collection of blood or multiday urine 
sample collections can be burdensome; how- 
ever, these measurements typically help pro- 
vide a more meaningful picture of the 
exposure. Other pesticide exposures not 
related to the farmwork activities being stud- 
ied may make interpretation of exposure pre- 
diction factors difficult. Interindividual 
differences in toxicokinetics present chal- 
lenges in comparing results of metabolite 
measurements among different people. 

When Is Biomonitoring 
Appropriate? 
Biomonitoring has been successfully used in 
many farmworker exposure studies. Studies are 
often focused on task-based assessments, for 
example, exposures resulting from uses of dif- 
ferent chemical handling and application meth- 
ods (Coronado et al. 2004; Grover et al. 1986a, 
1986b), harvesting or thinning operations 
(Coronado et al. 2004; McCurdy et al. 1994), 
or uses of personal protective equipment 
(Ojanen et al. 1992). Other studies have exam- 
ined multiple exposure factors (Acquavella et al. 
2004; Arbuckle et al. 2002; Arcury et al. 2005; 
Hines and Deddens 2001) or relationships 
between dermal or environmental and bio- 
marker measurements (Curl et al. 2002; 
Franklin et al. 1981; Honeycutt et al. 2001; 
Shealy et al. 1997). Although a number of stud- 
ies have measured biomarkers of effect (Anwar 
1997; Drevenkar et al. 1991; Hussain et al. 
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1990), fewer biomonitoring studies have been 
designed to assess exposures and health out- 
comes over either short or long time periods. 
Considerable knowledge of farming operations, 
exposure assessment, toxicokinetics, and analyt- 
ical chemistry is needed for successful design, 
implementation, and interpretation of farm- 
worker biomonitoring studies. 

Research publications and guidelines have 
described considerations, procedures, and 
issues in farmworker biomonitoring (Fenske 
1997; Nigg and Stamper 1989). Honeycutt 
(1986) described four criteria that must be 
met for deriving exposure from measuring 
pesticides or their metabolites in body fluids: 
a) the pesticide must be absorbed to an 
appropriate extent, and dermal absorption 
studies should be performed on appropriate 
species; b) the toxicokinetics and excretion 
kinetics in appropriate animals or humans 
must be understood; c) the analytical method 
must measure excreted parent compound or 
metabolites and the method must have suffi- 
cient sensitivity to detect concentrations that 
occur at the toxicologic no-effect level; and 
d) collection methods should be convenient 
for workers to gain their cooperation. 

As with the criteria recommended by 
Honeycutt (1986), the U.S. Environmental 
Protection Agency (U.S. EPA 1996a, 1996b) 
has developed occupational and exposure test 
guidelines that include guidance for biological 
monitoring studies. The feasibility of imple- 
menting biological monitoring studies is deter- 
mined by information available on the ADME 
of the chemical of interest. The pathway for 
measurements of biomonitoring of exposure in 
farmworker studies is shown in Figure 3. 

Designing Biomonitoring 
Studies 
Determining whether a biomonitoring study 
is feasible is only the first step in designing 
studies that assess exposure or differences in 
exposure for an individual or between individ- 
uals. Successful studies require using knowl- 
edge of the ADME process and analytical 
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Figure 3. Pathway for biological measurements. 
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chemistry to develop an implementation 
approach that will meet study objectives for a 
specific chemical. In particular, the timing of 
biological sample collection is very critical 
and highly dependent on both the exposure 
scenario and the uptake and elimination 
kinetics of the individual pesticides that may 
depend largely on the pesticides chemical and 
physical characteristics because, as stated pre- 
viously, many pesticides are rapidly absorbed 
and eliminated with biological half-lives of 
6-48 hr. Biomonitoring to assess well-defined 
handling or task-related exposures requires 
access to potential farmworker participants 
and sample collection shortly before and for a 
relatively short time (typically 1-5 days) after 
the monitored activity. 

Assessing long-term exposures to pesti- 
cides may be of interest in studies of health 
effect or health outcomes. Such an assessment 
may be difficult to implement, particularly for 
NPPs with short biological half-lives. In such 
cases, it will be necessary to collect biological 
samples at multiple time points as pesticide- 
related activities are repeated through a sea- 
son. Such studies have been reported for 
forestry workers (Lavy et al. 1993) and in a 
multiday study of exposure of farmers, their 
spouses, and their children to three pesticides 
(Acquavella J, personal communication). 

Human toxicokinetic information has been 
reported for some chemicals, for example, 
2,4-D (Sauerhoff et al. 1977), chlorpyrifos 
(Nolan et al. 1984), and atrazine (Buchholz 
et al. 1999); however, these data are lacking for 
most pesticides. Hence, most pesticides will 
require using animal data, where available, to 
estimate human parameters and the uncer- 
tainty of extrapolating these data to humans 
must be recognized. However, a properly 
designed biomonitoring study may provide 
insights into whether animal and human toxi- 
cokinetics for a given pesticide are similar. In 
some cases, it may be feasible to measure the 
parent compound in urine, blood, or saliva, 
but most often metabolites of parent com- 
pounds are measured in biological media. After 
appropriate study design and protocol develop- 
ment, the institutional review boards of partici- 
pating groups must obtain human subjects' 
approvals to ensure that the protocol complies 
with all national and international guidelines 
for the protection of research subjects. 

Sampling Time Frame 
The sampling time frame for NPPs is not 
straightforward. Because these chemicals have 
short biological half-lives, the samples, 
whether blood, urine, or saliva, must be col- 
lected soon after the exposure in order to 
appropriately assess the exposure. In general, 
sample collection for NPP measurements 
should reflect the residence time of the chem- 
ical in each individual matrix. The half-lives 

of NPPs in blood are typically much less than 
in urine samples. Thus, blood samples may 
need to be collected within minutes or hours 
after the exposure, whereas urine samples may 
be collected several hours or, in some 
instances, days after the exposure. However, 
understanding the timing of exposure may 
complicate the sample collection scheme 
because very often the exposure time may not 
be easily pinpointed. For example, farmwork- 
ers may be unaware that a pesticide was 
applied to a particular crop or what pesticide 
was applied and thus would be unaware of 
the exposure. Further, the contact with pesti- 
cides could occur throughout the workday, 
intermittently during the workday, or even 
during one short segment of the workday. 
Without having information on the precise 
timing of exposure, the magnitude of the 
exposure will be difficult to estimate. 

Temporal Variability 
in Biological Samples 
The variability of NPP levels in samples col- 
lected from an individual over time is of con- 
cern whether the sample is biological or 
environmental. Temporal variability can 
include the variation of a given chemical in 
multiple samples collected on a single day or 
can include variation among days, months, or 
seasons. For chronic exposures to pesticides, a 
single sample will likely represent a day's expo- 
sure to a given chemical or exposure over a 
longer period of time, because the exposure is 
repeated. However, for episodic exposures, a 
single sample may or may not represent a sin- 
gle-day or longer-term exposure to a given 
chemical. To further complicate the process, 
the representativeness of a single spot sample 
will likely vary from chemical to chemical and 
among persons. In general, occupational expo- 
sures such as those encountered by farmwork- 
ers tend to be episodic, whereas environmental 
exposures tend to be chronic with occasional 
mini-episodic exposures. Farmworkers are 
likely to encounter both occupational and 
environmental exposures. 

For urine matrix, a 24-hr urine sample is 
preferred rather than a single spot sample on a 
given day. Further, estimated total excretion of 
certain pesticides/metabolites has been shown 
to correlate highly with their levels in 24-hr 
urine samples (Acquavella J, unpublished 
observations). Collection of a 24-hr sample 
before the monitored activity and collection of 
24-hr samples from 1 to 5 days after the activ- 
ity have been recommended (Honeycutt 
1986; U.S. EPA 1996a, 1996b). Collection 
and analysis of spot urine samples are some- 
times used to reduce participant burden and 
to avoid potential confounding from addi- 
tional chemical uses. If spot samples are col- 
lected, a first morning void is often preferred 
because the urine is more concentrated, the 

collection represents a longer window of accu- 
mulation (usually > 8 hr), and it is often corre- 
lated with total excretion over 24 hr (Kissel 
et al. 2005; Scher et al., in press). To evaluate 
daily, monthly, or seasonal variations of ana- 
lytes in urine, sequential samples are often 
taken days and weeks apart to evaluate how 
the intraindividual variation over time com- 
pares with the interindividual variation and 
whether an accurate classification of exposure 
is possible. Temporal variation studies are 
important in interpreting the biomonitoring 
data and should be considered, at some level, 
in all biomonitoring studies. These data will 
help to determine whether multiple samples 
should be taken and at what intervals. In most 
instances, sampling for nonpersistent chemi- 
cals, whether environmental or biological, will 
require multiple samples taken over the course 
of the study at regular intervals (e.g., weekly, 
monthly, semiannually, etc.). 

Issues in Data Interpretation 
The toxicokinetic process is complex and 
dynamic and may vary based on demographic 
variables such as age, sex, or race/ethnicity or 
may change with diet, coexposures (e.g., envi- 
ronmental chemicals, alcohol, tobacco, and 
medications), and certain medical conditions. 
The variability in the toxicokinetic process 
makes interpretation of biomonitoring data 
inherently complex. It is difficult to gauge the 
differences in the magnitude of exposures 
among individuals based upon biological 
measurements alone because their metabolism 
may play a key factor in these differences. 
Measurement of urinary biomarkers allows 
direct assessment of exposure and dose for some 
pesticides. For example, 2,4-D is largely unme- 
tabolized, and > 95% is eliminated in urine 
(Sauerhoff et al. 1977). Multiple elimination 
routes and variable metabolism can complicate 
the measurement and interpretation of bio- 
markers for other chemicals. For example, 
atrazine has been shown to have multiple uri- 
nary metabolites (Buchholz et al. 1999). Large 
interindividual differences in the formation of 
the metabolites, and changes of the metabolite 
profile at different times after exposure further 
complicate interpretation of exposure and dose 
using urinary atrazine biomarkers (Buchholz 
et al. 1999). Other pesticides may undergo sig- 
nificant elimination through feces and sweat 
that might not be accounted for in urine collec- 
tions. Understanding intra- and interpersonal 
variability in metabolism (e.g., the ability to 
appropriately oxidize molecules using cyto- 
chrome P450 enzymes or detoxify activated 
molecules with paraoxonase activity) and excre- 
tion will allow better assessment of the uncer- 
tainty in concentration measurements and dose 
estimations. Regardless, the interpretation of 
biological data remains a complex process and 
should be made with caution. 
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Interpretation of biological measurements 
can be confounded in several ways. The farm- 
worker may have been exposed to the pesticide 
of interest in the days before the monitored 
activity. In this case, the biomarker level may 
not be at a baseline before sample collection in 
the study. In other cases, the farmworker may 
be exposed to the chemical in days subsequent 
to the monitored activity, potentially inter- 
fering with results from multiday postapplica- 
tion sample collections. Correction of pre- or 
postactivity concentrations may be difficult or 
impossible unless the other exposure scenarios 
are well defined and the uptake and elimina- 
tion kinetics well understood. Where feasible, 
studies of exposure resulting from specific pes- 
ticide handling or work tasks should be per- 
formed with no other handling or work task 
within several days before or after the moni- 
tored activity. If that is not feasible, informa- 
tion about the time, duration, and amount of 
handling and work tasks should be collected 
through questionnaires to allow better inter- 
pretation of the monitored activity. 

Interpretation of biological measurements 
can also be complicated if the metabolite of 
interest can be formed by different parent pes- 
ticides. For example, 1-naphthol is a metabo- 
lite of both naphthalene (used as a moth 
repellent and also a polycyclic aromatic hydro- 
carbon from combustion processes) and car- 
baryl (Shealy et al. 1997). In this case, it may 
be important to obtain information regarding 
potential exposures to the other chemicals. The 
most specific biomarker available for a particu- 
lar chemical should be used whenever possible 
to simplify interpretation. Emerging work also 
suggests that people can be exposed to the 
metabolite of a chemical in the environment 
(Morgan et al. 2005; Wilson et al. 2003) or 
through the diet (Lu et al. 2005). If the 
metabolite is absorbed in the body, then distin- 
guishing between exposure to the parent chem- 
ical and the metabolite may create uncertainty 
in the interpretation of the measurement. 
Measurements to assess potential exposures to 
metabolites should be performed to determine 
whether the metabolite is present in the 
worker's environment in sufficient quantities 
to interfere with the biomonitoring study. 

Successful interpretation of biological 
measurements often requires collecting 
important information from the farmworker 
regarding the activities resulting in pesticide 
exposures. Information about the start and 
completion time for important activities is 
needed in order to place the exposure in cor- 
rect relation to the biological sample collec- 
tion timing. Information about the work task 
can be used to assess differences between 
farmworker measurement results. Such infor- 
mation might include use of specific equip- 
ment or procedures and the number of times 
activities were repeated. Information about 

other potential exposure factors may be col- 
lected to aid interpretation of results. Such 
factors might include use of personal protec- 
tive equipment or engineering controls, 
hygiene activities and timing, food consump- 
tion or smoking during the work period, and 
possible spills or equipment leaks during pes- 
ticide handling (Quandt et al. 2006). 

There are several issues regarding interpre- 
tation of urinary measurement results. For 
spot samples, the concentration measurement 
may not be representative of elimination 
over longer time periods because of short-term 
volume and excretion rate differences. For 
24-hr samples, there can be a high degree of 
intra- and interindividual variability in 24-hr 
urine volume, making uncorrected compar- 
isons of concentrations across days and 
between people difficult to interpret. 
Researchers often fail to consider that the 
24-hr collection period does not necessarily 
translate directly to a 24-hr excretion period- 
a period that may be several hours shorter or 
longer depending on void times. Studies rely- 
ing on single 24-hr samples should take the 
excretion period into account when compar- 
ing results among applicators. 

Urinary creatinine is often used to adjust 
for urine volume in biomonitoring for exoge- 
nous chemical exposures. For some chemicals, 
such corrections have been shown to reduce 
uncertainties (Barber and Wallis 1986). 
However, for some biomonitoring studies the 
creatinine corrections have failed to improve, 
or have actually increased, uncertainties (Berlin 
et al. 1985). There are two reasons why creati- 
nine corrections may not be appropriate for 
pesticide biomonitoring. First, there is a wide 
range of normal creatinine excretion in healthy 
adults, making it difficult to compare creati- 
nine-adjusted results between people (Alessio 
et al. 1985; Barr et al. 2005b). Second, rela- 
tively large intraindividual daily variability in 
creatinine excretion has been reported, suggest- 
ing that even creatinine corrections between 
24-hr periods for the same individual may not 
be appropriate (Greenblat et al. 1976). The 
underlying physiologic process of creatinine 
formation and excretion can be dependent on 
several factors, including age, gender, diet, exer- 
cise, muscle mass, and underlying disease 
(Boeniger et al. 1993). These processes may not 
be the same as those governing metabolism and 
excretion of pesticides. 

Other parameters such as specific gravity 
or osmolality have been suggested as a way to 
adjust for variable urinary volumes. Another 
approach using excretion rates has not been 
widely reported but may deserve consideration 
and testing. Under this approach, the excre- 
tion rate is calculated for the urine sample and 
used in analysis rather than the concentration. 
To calculate the excretion rate information 
about the total urine void volume, the start 

and end times for collection of the urine sam- 
ple, and the time of the previous void before 
starting to collect the urine sample must be 
known. This approach has the potential 
advantages of accounting for all of the excre- 
tion during a given time period and eliminat- 
ing the urine volume issue. This approach 
might not be appropriate if pesticide or pesti- 
cide metabolite excretion is found to be 
dependent on internal urine production rates. 

Use of Biomonitoring in 
Paraoccupational Exposure 
Assessments 
Paraoccupational exposures, often called take- 
home exposures, are environmental exposures 
that occur from the transfer of pesticides from 
a person who is occupationally exposed to a 
nonoccupational environment. Similar bio- 
monitoring issues should be addressed when 
evaluating paraoccupational exposures, 
although the exposures may be expected to be 
lower in magnitude and more difficult to 
interpret. Urinary dialkylphosphate levels have 
been used in many studies, which indicate 
children are at risk of exposures to organo- 
phosphorus pesticides based on their parental 
occupation or their household proximity to 
farmland (Koch et al. 2002; Lu et al. 2000), 
self-reported residential use of pesticides by 
the parents (Aprea et al. 2000; Lu et al. 2001) 
or other factors (Aprea et al. 1996). However, 
the uncertainties in these measurements 
should also be considered to determine 
whether the biomonitoring measurements 
reflected true exposures or exposures to 
environmental breakdown products. 

What Can Biomonitoring 
Measurements Really Tell Us? 
Obviously, to yield the maximum information 
from the biomonitoring component of a farm- 
worker study, the ideal assessment should 
include multiple, longitudinal 24-hr samples 
after a known exposure event to a known 
chemical with other potentially variable factors 
narrowly controlled. In many farmworker 
studies, however, many of these variables can- 
not be feasibly controlled or even understood, 
and the costs and participant burden may be 
too large to bear. For example, often farm- 
workers do not know if any pesticide has been 
used on a field in which they are working. 
Thus, it would be nearly impossible to deter- 
mine the timing of exposure. In general, a sin- 
gle spot-sample biomonitoring measurement 
can allow a cross-sectional evaluation of 
whether or not an exposure has occurred and 
some information on the magnitude of expo- 
sure, assuming the chemical measured is spe- 
cific for a given exposure. To go beyond this 
interpretation, additional information is neces- 
sary. For example, if the exposure timing is 
unknown, certain activities could be recorded 
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and the biomonitoring measurements evalu- 
ated in relation to the specific activities. 
Additionally, environmental or personal meas- 
urements could be taken to evaluate the 
potential for exposure from various activities. 
Multiple measurements over time may allow 
evaluation of the consistency of exposure, 
especially if the same activity is performed 
over that period of time. 

If the biomonitoring measurements are to 
be used to extrapolate back to the exposure, 
additional information for that chemical such 
as toxicokinetic data, rate of intake, and rate 
of uptake may be required. Again, this still 
would provide only a single measurement in 
time. Multiple measurements over the dura- 
tion of exposure-related activities must be 
taken to determine peak exposures. To relate 
the biomonitoring measurement to a health 
outcome, other required information may 
include population susceptibility factors, 
plausible mechanism of toxicity, and informa- 
tion on whether the exposure evaluated pre- 
ceded the development of the health effect in 
question. Of course, such exposure estimates 
and health effects associations can be made 
without the necessary information, but the 
strength of the interpretation is weakened 
because of the additional uncertainties associ- 
ated with the assumptions made in lieu of the 
required information. 

Specific Recommendations 
To allow better harmonization of data from 
existing and future studies involving biomoni- 
toring, we recommend several specific guide- 
lines for study design and implementation 
and for reporting data and study findings in 
the peer-reviewed literature: 
* The appropriateness of biomonitoring meas- 

urements in the proposed study should be 
considered. 

* The frequency and timing of sample collec- 
tion should be carefully evaluated, and an 
adequate number of samples to describe the 
exposure should be taken. 

* Ideally, pre- and postexposure samples should 
be collected. If the timing of exposure is un- 
known, specific task-related activities should 
be recorded for each study participant. 

* Ideally, 24-hr samples should be collected. If 
not possible, a first morning void, noting the 
time since last urination and the total urine 
void volume, should be collected. If collect- 
ing a spot sample is the only practical option, 
the ability of a single spot sample to predict a 
24-hr value should be evaluated in a pilot 
study. 

* Paraoccupational exposures should be evalu- 
ated alongside farmworker exposure studies. 

* The most selective analytes for assessing 
exposures should be measured in biological 
samples. Measurement of less selective 
metabolites may allow for "class" exposure 

assessment that may help to more narrowly 
focus measures for subsequent studies. 

* The most selective measurement techniques 
for providing robust data should be 
employed. However, the cost of the analysis 
should be carefully weighed against the sam- 
ple number requirements to ensure that the 
overall cost is in keeping with the study 
budget. Fewer "selective" measurements 
may provide less meaningful data than a 
larger number of samples with more general 
measurements, depending upon the expo- 
sure assessment question. The reverse can 
also be true, depending upon the question. 

* Analytic methods should be further devel- 
oped allowing the analysis of potentially 
useful biomolecular adducts that might 
extend the window for capturing exposures 
or allow more interpretable measurements 
of internal doses. 

* The uncertainties of biological measurements 
should be considered when interpreting the 
resulting data. The uncertainties associated 
with the measurements and with the inter- 
pretations and any assumptions made during 
the process should be explicitly stated. 
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