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PON1 status of farmworker mothers and children as a
predictor of organophosphate sensitivity
Clement E. Furlonga,*, Nina Hollandb,*, Rebecca J. Richtera, Asa Bradmanb,
Alan Hob and Brenda Eskenazib

The objective was to determine PON1 status as a predictor

for organophosphorus insecticide sensitivity in a cohort of

Latina mothers and newborns from the Salinas Valley,

California, an area with high levels of organophosphorus

insecticide use. PON1 status was established for 130

pregnant Latina women and their newborns using a high-

throughput two substrate activity/analysis method which

plots rates of diazoxon (DZO) hydrolysis against rates of

paraoxon (PO) hydrolysis. Arylesterase activity (AREase)

was determined using phenylacetate as a substrate,

allowing comparison of PON1 levels across PON1192

genotypes in mothers and children. Phenylacetate hydro-

lysis is not affected by the Q192R polymorphism. Among

newborns, levels of PON1 (AREase) varied by 26-fold

(4.3–110.7 U/ml) and among mothers by 14-fold

(19.8–281.4 U/ml). On average, children’s PON1 levels

were four-fold lower than the mothers’ PON1 levels

(P < 0.001). Average PON1 levels in newborns were

comparable with reported hPON1 levels in transgenic mice

expressing human PON1Q192 or PON1R192, allowing for

prediction of relative sensitivity to chlorpyrifos oxon (CPO)

and DZO. The predicted range of variability in sensitivity of

mothers and children in the same Latino cohort was 65-

fold for DZO and 131 to 164-fold for CPO. Overall, these

findings indicate that many of the newborns and some of

the mothers in this cohort would be more susceptible

to the adverse effects of specific organophosphorus

pesticide exposure due to their PON1 status. Of particular

concern are exposures of pregnant mothers and newborns

with low PON1 status. Pharmacogenetics and Genomics
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Introduction
Recent biological and ambient monitoring data have

indicated widespread organophosphate pesticide expo-

sures to the US population, including adults, pregnant

women, children and fetuses [1–9]. In some cases, these

exposures may exceed health-based reference levels [10–

11]. Although many uses, including residential applica-

tions, of chlorpyrifos (CPS) and diazinon (DZ) were

recently restricted by agreements with registrants

[12,13], agricultural uses are still widespread. Organophos-

phate exposures at high doses have profound effects,

primarily on the central nervous system [14], and there is

growing evidence in animals and humans to suggest that

chronic low level exposure may affect neurodevelopment

[5,15–17].

The young of many species are more susceptible to

organophosphate toxicity than adults [18–22]. For exam-

ple, the maximum tolerated dose (MTD) of CPS in

7-day-old (PND7) rats is approximately 7.7% of the MTD

in adult animals [22]. One factor contributing to the

increased sensitivity in newborns is that levels of

paraoxonase 1/arylesterase (PON1), a key organophos-

phate detoxifying enzyme, are three- to four-fold lower

than in adults [23–27]. Even among adults, the levels of

PON1 can vary by at least 13-fold [28].

Human PON1 enzyme, a high-density lipoprotein-

(HDL) associated esterase, is encoded as a 355 amino

acid protein by the PON1 gene on chromosome 7q21.3–

22.1 [29] with only its initiator methionine residue

removed before incorporation into HDL particles [30,31].

In humans, a Q192R polymorphism affects the catalytic

efficiency of hydrolysis of some organophosphate sub-

strates [28,32,33], including chlorpyrifos oxon (CPO),

the toxic metabolite of CPS [34]. The characterization of

all 28 TagSNPs accounts for only 28% of the variance in

PON1 levels (G.P. Jarvik, personal communication),

much of which is attributable to a C-108T polymorphism

in an Sp1 binding site in the 50 regulatory region [35–37].*The first two authors contributed equally to this work.
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Simple biochemical principles dictate that rates of

detoxication of substrates are dependent on enzyme

levels. Thus, when considering the effects of genetic

variability on sensitivity to CPS/CPO exposures, both the

quantity (level) of PON1 as well as the quality (Q192

versus R192) of PON1 must be considered. In other cases

where the catalytic efficiency of hydrolysis of the two

PON1192 alloforms is equivalent [e.g. for diazoxon

(DZO) hydrolysis], it is the level of PON1 that is

important [34].

Li et al. [38] introduced the term PON1 status to include

both PON1 level and functional PON1192 genotype (Q/Q;

Q/R; R/R) [38]. In this method, PON1 status is

determined with a simple, high-throughput two-substrate

assay and analysis where rates of DZO hydrolysis are

plotted against rates of PO hydrolysis using serum or non-

EDTA preserved plasma samples. This method, validated

in adults, provides a functional determination of the

PON1192 alloform(s) present in plasma, as well as the

level of an individual’s plasma PON1 [39–41], both

important in modulating exposures to organophosphorus

compounds as well as other risks associated with PON1

status. The lower PON1 levels associated with PON1M55

[42] are primarily attributable to linkage disequilibrium

with the inefficient promoter polymorphism T-108 [35].

The development of animal model systems has provided

important insights into the role of PON1 in detoxifying

specific organophosphorus compounds. Injection of puri-

fied rabbit PON1 into rats increased resistance to

paraoxon (PO) exposure [43,44] and, more significantly,

to CPO exposure [44] because rabbit PON1 hydrolyses

CPO very rapidly [45]. These observations were con-

firmed and extended using mice, which required much

less purified PON1 for injections and were more

amenable to genetic manipulation [34,38,46]. Injected

PON1 protected against CPS/CPO exposures when

injected 30 min or 24 h before exposure or up to 3 h post

exposure [47]. These experiments provided convincing

evidence that high levels of PON1 protected against

CPS/CPO exposures. The increase in resistance was most

dramatic against CPO exposures [34].

The generation of PON1 knockout mice by Shih et al. [46]

provided a model with which to examine the conse-

quence of the absence of plasma PON1 on resistance to

organophosphate exposures. The PON1 null mice were

found to have dramatically increased sensitivity to CPO

[46] and DZO exposure [34], and less noticeably

increased sensitivity to the respective parent compounds

CPS [46,47] and DZ [34]. It was surprising to find that

the PON1 null mice did not have increased sensitivity to

PO exposure [34].

Injection of purified human PON1Q192 or PON1R192

reconstituted PON1 activity in the serum of the PON1

null mice allowed for the testing of the efficiency of each

human PON1192 alloform in protecting against exposure

under physiological conditions without exposing human

subjects to these toxic organophosphates [34]. Examina-

tion of the catalytic efficiencies of hydrolysis of CPO,

DZO and PO showed that it was the catalytic efficiency

that determined whether PON1 would protect against

exposures. Either hPON1192 alloform protected equally

well against DZO exposure, in agreement with the

equivalent catalytic efficiency of each alloform for DZO

hydrolysis. However, the hPON1R192 alloform provided

significantly better protection against CPO exposure, in

agreement with the higher catalytic efficiency of

PON1R192 for CPO hydrolysis [34]. These observations

on CPO exposures have been confirmed in transgenic

mice expressing one or the other PON1192 alloform at

equivalent levels [48]. The finding that PON1Q192 does

not protect as well as PON1R192 against CPO/CPS

exposures is important because up to 50% of the general

population is homozygous for PON1Q192 [49]. The

catalytic efficiency for PO hydrolysis was too low to

provide protection against PO exposures [34].

In the present study, we determined the PON1 status of

130 pregnant Latina women and their newborns living in

an agricultural community in California [7], a region

where approximately 22 727 kg of organophosphates are

used annually [50]. We have previously reported that

maternal urinary dialkyl phosphate metabolite levels are

higher in this population relative to national reference

data [8] and were associated with a shorter gestational

age [51] and an increased frequency of abnormal reflexes

in neonates [16]. The main aims of this study were to

assess PON1 status in newborns and mothers and to

predict their relative sensitivity to specific organophos-

phorus insecticides based on recent studies with ‘PON1

humanized transgenic mice’ expressing either human

PON1R192 (hPON1192) or PON1Q192 (hPON1Q192) at

equivalent levels [48].

Methods
Subjects and recruitment

A subset of 130 maternal-newborn pairs were randomly

selected from the CHAMACOS cohort (Center for the

Health Assessment of Mothers and Children of Salinas),

a longitudinal birth cohort study (n = 601 enrollees, 528

live births) of the effects of environmental exposures on

the health of children living in the Salinas Valley [7].

Women were eligible for enrollment in the CHAMACOS

study if they were 18 years or older, less than 20 weeks

gestation at enrollment, English- or Spanish-speaking,

Medi-Cal eligible, and planning to deliver at the

Natividad Medical Center. All women were Latina by

ethnicity, including 87% born in Mexico, and the

remainder in the USA. Approximately 28% of the women

had worked in the fields during the pregnancy and
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another 14% had other jobs in agriculture, including

packing shed, nursery and greenhouse work. Overall, 82%

of subjects had agricultural workers living in their homes

during pregnancy. Additional information about exposure

and associations with health outcomes is reported else-

where [7,8,16,51]. All study protocols were approved by

both the University of California, Berkeley and the

University of Washington human-subject review pro-

cesses. Informed consent was obtained for all subjects.

Biological sample collection and processing

Blood was collected from mothers at the time of their

glucose tolerance test (26 ± 2.3 weeks’ gestation) and in

the hospital immediately before or after delivery.

Umbilical cord blood was collected by delivery room staff

once the baby was safely delivered. Heparinized whole

blood was centrifuged, and divided into plasma, buffy

coats and red blood cells, and stored at – 801C. Processed

plasma samples were stored at – 801C before being

shipped on dry ice to the University of Washington,

Seattle, where they were also stored at – 801C until

analysis of enzyme activity. We first compared PON1

activities in 25 mothers at two time points (26 weeks

gestation and delivery). PON1 activities were highly

correlated between the two time points for all three

measured activities of PON1 (r = 0.7, 0.8, 1.0, P < 0.0001

for AREase, CPOase and DZOase, respectively). The

ranges for the two measurements were comparable.

Therefore, in subsequent samples, we measured PON1

activities in blood collected at one time point only

(26 weeks’ gestation).

Determination of PON1 status

PON1 status (functional PON1192 genotype and plasma

level) was determined by the method developed and

validated on adult populations by Richter and Furlong

[39]. This method provides an accurate determination of

functional PON1192 genotype through the use of a two-

substrate enzyme kinetic analysis. PON1 enzyme activ-

ities in plasma of mothers and children were measured

with three different substrates, including paraoxon

(POase), diazoxon (DZOase) and phenylacetate

(AREase), according to published protocols [39–41,52].

Because phenylacetate hydrolysis is not affected by the

Q192R polymorphism and has been shown to correspond

with PON1 levels determined by immunological methods

[29,53], AREase activity was used for measurement of

PON1 levels across genotypes. For PON1 status deter-

mination, rates of DZO hydrolysis were plotted against

rates of PO hydrolysis for each mother and newborn child

(cord blood) in the study. This analysis separates the

population into three distinct groups, individuals func-

tionally homozygous for PON1Q192, PON1Q/R192 hetero-

zygotes and individuals functionally homozygous for

PON1R192. The accuracy of the PON1192 functional

genotype determination has been verified by polymerase

chain reaction (PCR) analysis of more than 2000 adult

samples and has been shown to identify individuals with

mutations in the PON1 gene [41]. Although this plot

suggests that PON1R192 homozygotes have lower rates of

DZO hydrolysis than heterozygotes and PON1Q192

homozygotes, this is not the case, as the position 192

alloforms have equivalent catalytic efficiencies for DZO

hydrolysis [34]. However, the PON1R192 alloform is more

sensitive to inhibition by the high salt concentration

intentionally used in this assay to resolve the three

PON1192 phenotypes. The distributions and descriptive

statistics of PON1 status and enzyme levels in mothers

and their newborns were analysed by STATA 8.0 [54].

Results
PON1 status

Figure 1 shows the PON1 status for mothers and

newborns (cord blood) as determined by the plot of

rates of hydrolysis of DZO versus PO. This plot clearly

resolves the three functional PON1192 phenotypes

(verified by PCR analysis) for the mothers. However, a

number of data points for newborns with lower activity

values (22 out of 130 or approximately 17%) were not

resolved by this analysis and could only be accurately

assigned by genotyping the Q192R polymorphism. How-

ever, the PON1 status plot provided relative PON1 levels

for each of the 22 subjects. This analysis also shows the

effects of independent allelic expression in the hetero-

zygotes (including the newborns) with some individuals

expressing more of one PON1192 alloform than the other.

Genotyping alone does not provide this information.

Several points are worth noting from this analysis: (i)

there is a large variability of PON1 activity values within

each PON1192 genotype, both for mothers and newborns;

(ii) both groups of homozygotes fall closely to the trend

line; and (iii) the heterozygote values vary considerably

from the trend line (trend line not shown), consistent

with the concept of independent cis regulation of each

PON1 allele (Fig. 1).

Range of plasma PON1 levels

Figure 2 shows PON1 levels across genotypes for mothers

and newborns estimated by the AREase activity. Figure 3

shows the effects of the PON1192 polymorphism on rates

of paraoxon hydrolysis across genotypes for mothers and

newborns, and provides an excellent example of why

substrates whose rates of hydrolysis are affected by the

PON1192 polymorphism should not be used to compare

levels across position 192 genotypes. Rates of paraoxon

hydrolysis are significantly lower for Q/Q homozygotes

and heterozygotes than for R/R homozygotes. The

AREase activity in mothers ranged from a low of 19.8

U/ml to a high of 281.4 U/ml (14-fold) and, in newborns,

from 4.3–110.7 U/ml (26-fold) (Fig. 2). The range of

AREase activity (PON1 levels) from the lowest newborn

to the highest mother was 4.3–281.4 U/ml (65-fold). The

mean PON1 levels, as measured by AREase, were similar

across PON1192 genotypes for all mothers (Q/Q = 152
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U/ml, Q/R = 144 U/ml and R/R = 152 U/ml). The mean

PON1 levels were also similar across genotypes in

newborns (Q/Q = 31 U/ml, Q/R = 36 U/ml and R/R =

43 U/ml), with the newborn PON1R192 homozygotes

having somewhat higher average AREase activity than

the PON1Q192 homozygotes and the newborn hetero-

zygotes expressing intermediate levels. However, these

AREase activity differences between genotype groups

were not statistically significant (P = 0.13). Although

newborns had on average four-fold less plasma PON1

than mothers, individual levels in mother-child pairs were

modestly correlated (r = 0.47, P = 0.013) (Fig. 4).

Estimation of the range of sensitivity to organophos-

phate exposure

Because both PON1192 alloforms hydrolyse DZO with the

same catalytic efficiency [34], these data predict a range

of sensitivity to DZO exposure of 26-fold in newborns

and 14-fold in mothers, with a range of 65-fold from the

most sensitive newborn to the most resistant mother. An

average four-fold difference in sensitivity to DZO

exposure is predicted between mothers and newborns.

Fig. 2
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Estimation of the range of sensitivity to CPO exposure is

more complex, due to the different catalytic efficiencies

of the two PON192 alloforms for CPO hydrolysis.

However, reasonable estimates of relative sensitivity can

be made by taking advantage of data generated in the

mouse model system, where the mouse PON1 gene was

replaced with either human hPON1Q192 or human

hPON1R192 and colonies were established that expressed

these alloforms at the same levels in plasma. Transgenic

mice expressing hPON1Q192 were found to be 2- to 2.5-

fold as sensitive to CPO exposure compared to mice

expressing hPON1R192 [48], due to the higher catalytic

efficiency of human PON1R192 for hydrolysis of CPO

[30]. This two- to 2.5-fold difference in sensitivity, taken

together with the 65-fold difference in plasma AREase

levels yield an estimated 131–164-fold range in CPO

sensitivity between the PON1Q/Q192 homozygous new-

born with the lowest PON1 level and the PON1R/R192

homozygous mother with the highest PON1 level.

Discussion
To our knowledge, this is the first study where PON1

status [39,41,52] was determined for a large cohort of

mothers and their newborns using the two-substrate

assay. By plotting rates of DZO hydrolysis against rates of

PO hydrolysis, the three Q192R phenotypes were clearly

separated in the mothers and provided the relative PON1

levels for each individual in this population. However, we

found that for 17% of the newborns, with low PON1

levels, PCR analysis was required to assign position 192

genotypes, although the PON1 status analysis did provide

their cord blood PON1 levels. Although some of the

earlier studies examined only PON1 status with the two

substrate diazoxon/paraoxon assay/analysis, this study

included a measurement of rates of phenylacetate

hydrolysis (AREase), allowing comparison of PON1 levels

across PON1192 genotypes. Another study examining the

relationship of PON1 levels, exposure and head circum-

ference in a large cohort of 404 births also made use of

AREase activity to determine PON1 levels [55], repre-

senting a major improvement over the many studies that

examined PON1 genotypes alone [49]. They noted a

relationship between low PON1 levels, exposure and

smaller head circumference.

The AREase values provided an estimate of the relative

sensitivity to organophosphorus compounds whose in-vivo

catalytic efficiencies of hydrolysis are not affected by the

PON1192 polymorphism (e.g. DZO). The range of AREase

values in the mothers was very similar to the range

observed in another study of Hispanic farm workers in

Washington State where a 13-fold variability was observed

[28]. The large range of AREase values observed in this

study in the newborns (26-fold) predicts a broad

variability in sensitivity to organophosphate exposure

even among newborns. Surprisingly, some of the new-

borns had higher PON1 levels than some of the adults.

Thus, the individuals predicted to be highly sensitive to

organophosphate exposure include most of the newborns

as well as some of the mothers. The studies reported here

confirm earlier observations of lower PON1 activities in

neonates compared to adults [23–27,56] and are also

consistent with a recent report where neonates had 2.6–

4.6-fold lower PON1 levels, as assessed by the AREase

assay, compared to mothers, in three ethnic groups in

New York City [23].

Among the many activities of the multifunctional HDL-

associated enzyme PON1, hydrolysis of DZO and CPO is

important in providing protection against exposure to DZ/

DZO and CPS/CPO. Organophosphate exposures are

appropriately considered as mixed exposures to the

parent compounds and their oxon forms because most,

if not all, exposures include oxon residues [57,58].

Because the rate of cholinesterase inactivation by CPO

is at least three orders of magnitude higher than that of

its parent compound (CPS) [59], a very small percentage

of oxon form in an exposure is significant.

To date, most of the animal model studies with

genetically modified mice have examined CPO/CPS

exposures [34,38,46–48,60], although some recent stu-

dies were carried out on DZ/DZO exposures in PON1

null mice and PON1 null mice injected with each of the

purified human PON1192 alloforms [34]. The results

obtained in these earlier studies have provided important

insights and predictions with respect to individual

variability in sensitivity to CPO/CPS and DZ/DZO

exposures. Li et al. [34] examined the relative in-vivo

catalytic efficiencies of hPON1Q192 and hPON1R192 in

PON1 null mice reconstituted with purified human

PON1R192 or PON1Q192. They found that under in-vivo

physiological conditions, injection of either PON1192

alloform provided equivalent protection against DZO

exposure, whereas injected human PON1R192 provided

significantly better protection against CPO exposure than

did PON1Q192.

A more recent study by Cole et al. [48], using transgenic

strains of mice that expressed either PON1Q192 or

PON1R192 at nearly equivalent levels, verified the results

of Li et al. [34] from the enzyme injection studies in the

PON1 null mice. The mice expressing PON1R192 were

approximately two- to 2.5-fold more resistant to CPO

exposure than were the PON1 null mice. Mice expressing

PON1Q192 were nearly as sensitive as the PON1 null mice

to CPO exposures. The IC50 value (exposure level for

50% inhibition) for CPO inhibition in the hPONQ192

transgenic mice was approximately 1.1 mg/kg dermal

exposure versus approximately 2.2 mg/kg in the

hPON1R192 mice. The levels of PON1 in the ‘hPON1
humanized’ transgenic mice are relevant to the studies

reported here. The transgenic mice expressed levels of
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hPON1 of 30–45 U/ml AREase (corrected for baseline

AREase activity in PON1 null mice) [48], which are

comparable to the average levels of PON1 in the Latino

newborns described in the present study.

Cole et al. [24] examined the time course of appearance of

PON1 in the plasma of individual children and also in

mice expressing the two human PON1192 alloforms under

control of the human 50 and 30 regulatory sequences. In

children, PON1 reached plateau levels at 6–24 months of

age whereas expression of human hPON1 in mice under

control of the human PON1 50 regulatory region followed

the mouse time course of PON1 appearance, peaking at

PND21. Moser et al. [62] observed that, although AREase

activity in rats peaked at 3–4 weeks of age as observed by

Li et al. [61], resistance to CPS exposure continued to

increase up to at least 90 days, corresponding to a

continued increase in plasma carboxylesterase activity.

Although there is very little carboxylesterase activity in

human serum, individual variation in carboxylesterase

levels in human liver microsomes has been reported [63].

Levels of PON1 activities reported in other studies

provide insights into the range of sensitivities expected.

The hydrolytic activities in plasma of the wild-type

C57Bl/6J mice used in our earlier studies were approxi-

mately 1800 U/l for chlorpyrifos oxonase (CPOase) and

approximately 3500 U/l for diazoxonase (DZOase) [60].

These activities are in the low range relative to those

reported for human populations. The ranges of reported

activities in another adult Hispanic population were

2145–13 540 U/l for CPOase and 2174–23 316 U/l for

DZOase [28]. It is worth noting that PON1 null mice

are approximately ten-fold more sensitive to DZO [34]

and CPO [46] exposure than wild-type mice. Based on

what is known about the catalytic efficiencies of

organophosphate hydrolysis and the large variability of

PON1 levels observed in this and other populations,

mothers and newborns homozygous for PON1Q192 with

very low plasma levels of this alloform are predicted to be

a subpopulation uniquely vulnerable to adverse effects

from DZ/DZO exposures and especially CPS/CPO

exposures. One particular concern would be exposure of

a mother with very low PON1 status carrying a fetus that

had not yet developed the capacity for self-protection

against organophosphate exposure. PON1Q192 homozygous

mothers with very low PON1 status are also predicted to

be unable to pass on to their offspring a PON1 allele that

would be protective against exposure. The father of

course would contribute one PON1 allele to the child;

however, it would need to be a high expressing allele and

would take from 6 months to 2 years following birth to be

fully protective.

Although the usual precautions need to be observed in

extrapolating data generated in an animal model system

to predict outcomes in human exposures, genetically

manipulating a single gene in an inbred strain of mice is

nonetheless informative. PON1 appears to be the only

major enzyme in the plasma of both mice and humans

that hydrolyzes chlorpyrifos oxon and diazoxon, as can be

seen from the colinearity of the plots of rates of hydrolysis

of one substrate against others in human populations [28]

and from the dramatic consequences of deleting this gene

in mice [34,46]. Replacing the mouse PON1 gene with

each of the human PON1192 alleles provides a better

means of extrapolating between the two species, even

though other pathways may contribute somewhat to the

detoxication. Even among humans, there is variability in

levels and efficiencies of other contributory detoxication

enzymes, such as carboxylesterases and cytochromes

P450.

Several factors are likely to contribute to the risk of

adverse health effects due to exposures to CPS/CPO and

DZ/DZO: (i) the level of exposure; (ii) the percentage of

oxon residue or other toxic derivatives in the exposure;

(iii) the level of enzyme (measured by AREase assay);

(iv) the catalytic efficiency of an individual’s PON1 to

detoxify organophosphate metabolites (determined by

the Q192R polymorphism); and (v) the as yet unchar-

acterized genetic variability of the cytochromes P450,

carboxylesterases and other enzymes that participate

significantly in the detoxication of these organopho-

sphorus compounds.

Additional research is needed to determine the relative

contributions of PON1, cis- and trans-acting factors that

modulate PON1 levels, cytochromes P450 and other

enzymes, as well as the genetic and environmental factors

that modulate the levels of enzymes involved in

detoxication of parent compounds and their respective

oxons. A recently reported method of haplotyping using

emulsion PCR should be useful in understanding cis

factors involved in regulation of protein levels [64].

Research is also needed to determine the exposure levels

of specific residues (trichlorophenol, CPS, CPO, diethyl-

phosphate and other toxic metabolites) required for

modelling [48,65] the effect of PON1 status on the

consequences of exposures.

Evaluation of PON1 status is not only important for

determining risk of organophosphate exposure, but also

for understanding the role of PON1 in modulating other

risks associated with the variability of normal physiologi-

cal functions of PON1, as well as the role of PON1 in the

metabolism of other xenobiotics, including drugs [66].

Multiple results indicating a prominent role for PON1

status in risk for vascular disease have been published

previously [40,46,67,68]. More recently, PON1 has been

shown to inactivate the quorum sensing signal secreted

by Pseudomonads [66,69]; however, data demonstrating the
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in-vivo importance of this activity have not yet been

reported.

In summary, the range of variability of PON1 status

observed in this study, taken together with data from

‘humanized mice’ expressing hPON1Q192 or hPON1R192

in place of mouse PON1, predict a 65-fold variability in

DZO sensitivity and a 131–164-fold range in sensitivity to

CPO exposure in this population, with an average four-

fold difference in sensitivity to DZO exposure and an

average eight-to ten-fold variability in sensitivity to CPO

between groups of mothers and their newborns. These

data predict that most, if not all, newborns, as well as

a subpopulation of adults, will exhibit significantly

increased sensitivity to organophosphate exposure. These

findings highlight the significance of understanding the

susceptibility of young children to organophosphate

exposure and developing science-based risk standards

for pesticide regulation as required by the 1996 Food

Protection Act.
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