
Amer. J. Agr. Econ. 82 (August 2000): 527–540
Copyright 2000 American Agricultural Economics Association

Insect Population Dynamics, Pesticide Use,
and Farmworker Health

David Sunding and Joshua Zivin

We address the impacts of regulations designed to reduce pesticide poisoning of farmers and farm
laborers. Attention is concentrated on pre-harvest interval regulations that impose a time inter-
val between pesticide application and harvest. The incidence of poisoning is determined by aggre-
gate pesticide use, worker exposure, and toxicity. A dynamic, stochastic model of insect population
growth is developed and used to measure the incentives for pesticide use. Increasing the pre-harvest
interval has an ambiguous effect on the number of harvest worker poisonings. Pesticide taxation
unambiguously reduces the number of worker poisonings. Theoretical results are quantified in a
case study of mevinphos application on leaf lettuce in California’s Salinas Valley.
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Regulators and the public are becoming
increasingly concerned with the adverse pub-
lic health consequences of agricultural chem-
ical use. One of the most serious concerns
motivating pesticide regulation is the impact
of these chemicals on the health of farm-
ers and farmworkers. While there are a large
number of potential regulations to address
this problem, the typical response of state and
federal regulators to concerns about farm-
worker poisoning is to ban the use of the
product in question. This paper considers less
extreme interventions, and uses a dynamic,
stochastic model to assess their impacts on
pesticide productivity, pesticide use, and, ulti-
mately, worker health levels.
One potentially important type of agricul-

tural chemical regulation that has received
little attention in the economics literature is
interval regulation. Two notable examples of
interval regulation are the pre-harvest inter-
val (PHI) and the re-entry interval (REI).
The former governs the time between chem-
ical application and harvest, while the latter
sets the time between chemical application
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and the date workers can re-enter the field
to perform various tasks (e.g., installing
irrigation equipment). Since pesticides typi-
cally decay when exposed to sunlight, rain,
and other environmental factors, a suffi-
ciently long interval will reduce the chemi-
cal’s toxicity.
While there is now a relatively large lit-

erature on the economic effects of banning
pesticides (see for example Zilberman et al.;
Lichtenberg, Parker, and Zilberman; and
Sunding), there has been less analysis of the
impacts of regulating the timing of pesticide
applications. One notable exception is the
pioneering 1993 study of Lichtenberg, Spear,
and Zilberman, which presents a method for
finding efficient re-entry intervals.1 As a part
of their analysis, Lichtenberg, Spear, and Zil-
berman consider farmer response to regu-
lating the timing of pesticide applications.
They assume a pest infestation of predeter-
mined size and allow the farmer to choose
between applying pesticides early (preven-
tively) or on the last feasible day, defined
as the desired harvest date minus the re-
entry interval (reactively).They conclude that
farmers may respond to increases in the
re-entry interval by applying pesticides pre-
ventively. Furthermore, they conclude that
increasing the re-entry interval unambigu-
ously reduces the number of farmworker
poisonings.

1 The econometric analysis of Hubbell and Carlson considers
the effect of pre-harvest intervals on insecticide choice and the
choice of application rate.
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Our paper takes a different approach.
We formalize farmer response to interval
regulations in a model with explicit insect
population dynamics. In particular, we con-
sider the impact of increasing the interval
between chemical application and harvest
(i.e., PHI) on pesticide productivity and the
corresponding incentives for pesticide use.
Indeed, a main goal of our work is to give
micro-foundations to pesticide productivity
by explicitly considering insect population
growth. The impacts on pesticide use are
then traced through a health risk generation
model to measure the ultimate effect of inter-
val regulation on harvest worker health. This
approach yields substantially different results
than the work of Lichtenberg, Spear, and
Zilberman.
Insect growth rates are modeled as a geo-

metric Brownian motion process. This for-
mulation captures the well-established influ-
ence of stochastic weather conditions on
insect reproduction and development. Given
initial insect population levels and weather,
as well as market and regulatory condi-
tions, farmers form expectations about future
insect populations and hence crop damage.
Using this framework, it is possible to dis-
entangle the various effects of changing the
PHI.2 Increasing the time between pesticide
application and worker contact with pesti-
cide residue gives the chemical more time
to decay, thus benefiting workers. However,
increasing the PHI also alters the productiv-
ity of the chemical and changes the optimal
amount of pesticide application.
We show that there are cases in which

increasing the PHI may increase total pesti-
cide use. The ultimate effect of changing the
PHI is then ambiguous theoretically and rests
on the relative magnitudes of the pesticide
use and pesticide decay effects. An extreme
result of our model is that increasing PHI
may actually increase the number of pesti-
cide poisonings. This discussion shows a clear
distinction between our approach and that
of Lichtenberg, Spear, and Zilberman. Their
analysis precludes the result that increasing
the PHI increases pesticide use in that they
assume farmers only choose when to apply
pesticides, but not whether to apply pesti-
cides at all. In their framework, increasing the

2 Note that we are considering the problem of harvest worker
poisoning. In this case, there is effectively no difference between
a REI and a PHI. In other applications, the two types of interval
regulations may not be equivalent. Our theoretical results apply
to these other cases as well.

PHI gives farmers greater incentive to apply
the pesticide preventively, and benefits work-
ers by giving the chemical additional time
to decay. The Lichtenberg, Spear, and Zilber-
man result, by construction, ignores the possi-
bility that increasing the PHI can increase the
aggregate amount of pesticide use, thereby
counteracting, to some degree, the salutary
effect of increasing the decay interval.
We also apply our model to another impor-

tant intervention: pesticide taxes. We mea-
sure the impact of taxation on worker health
levels, and indicate its effectiveness rela-
tive to changing the pre-harvest interval.
Conceptually and empirically, we demon-
strate that pesticide taxes reduce pesticide
use and the incidence of pesticide poison-
ing. The interesting empirical question is the
magnitude of these impacts, and how they
compare to the sensitivity of worker safety
to pre-harvest interval regulation. This com-
parison is a first step toward a more gen-
eral determination of efficient worker safety
regulations that compares health impacts and
social welfare costs.
Our paper contains a case study in which

the theoretical model is applied to an
actual case of pesticide regulation: control-
ling worker poisoning from the insecticide
mevinphos in California’s Salinas Valley. This
case study demonstrates how the model can
be made operational and discusses the types
and sources of data needed to quantify the
economic, biological, and toxicological com-
ponents of the overall framework. The case
study measures the impact on worker poison-
ings of changing the length of the pre-harvest
interval for mevinphos, as well as imposing
pesticide taxes. The case study is significant
because it demonstrates that the integrated
approach to farmworker protection proposed
in this paper can be used to design policies in
a practical and accurate way.

The Model

The model is sequential and the major stages
are presented in Figure 1. In the initial
period, the farmer observes the initial insect
population, market parameters such as pes-
ticide cost and output price, and regulations
including the length of the pre-harvest inter-
val. Using this information, the farmer forms
expectations about profits at the date of
harvest with and without pesticide applica-
tion. He then chooses, in the second period,
whether or not to apply chemicals. In the
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Figure 1. The sequence of events

third period, which is the period of the
PHI, the insect population grows or declines.
Finally, harvest occurs in the fourth period, at
which time the farmer realizes some level of
profit.

Damage Function

We suppose that the farmer operates in
a competitive market. Insect damage is a
function of the number of insects at har-
vest. Expected profits are determined accord-
ing to the damage control specification of
Lichtenberg and Zilberman. In particular,
expected farm profits are equal to

E(�) = PY(1− D) − m(1)

where P is the output price net of production
costs except the pesticide, Y is potential out-
put, and m is the pesticide cost including any
taxes. The expectation is taken over the level
of insect damage, D.
Insect damage is a function of the size

of the insect population. We adopt a binary
damage function where damage is zero if
the insect population falls below some pre-
determined threshold for marketability. This
specification is accurate for many fresh and
frozen vegetable markets, including the case
of leaf lettuce studied in some detail in the
empirical section. For example, the USDA
sets maximum allowable limits on the num-
ber of aphids that can be present on fresh

lettuce, broccoli, cauliflower, and other crops.
Making the model more general by working
with a continuous, concave damage function
does not change the basic comparative static
results that are central to this paper, but does
make the analysis much more complex.
Damage has a probabilistic interpretation

as the likelihood that the insect population at
harvest exceeds a maximum allowable level,
in which case the harvest is a total loss.
Formally, D = Pr(XH > XG), where XH

is the insect population at harvest and XG

is the maximum allowable insect population.
We now turn to a discussion of insect popula-
tion dynamics and more fully develop expec-
tations about the terminal number of insects.

Insect Population Growth

The insect population growth rate is modeled
as an increasing function of the current insect
population and time. However, insect growth
is a stochastic process, due in part to the
influence of random factors such as weather
on reproduction rates (Varley, Gradwell, and
Hassell; Trumble; Minks and Harrewijn).
Formally, insect population growth is mod-
eled as a geometric Brownian motion process
with a drift component as follows:

dX = αX dt + σX dz(2)

where X is the current insect population, α is
the intrinsic insect growth rate, dt is an incre-
ment of time, σ is a variance coefficient, and
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dz = ξt

√
dt is the increment of a Wiener pro-

cess and ξt is standard normal.
The process in equation (2) has a num-

ber of features that make it appropriate for
modeling insect population levels. The pro-
cess is such that per-period growth rates
are normally distributed; as we discuss in
the empirical section below, this property
matches closely with experimental evidence
relating insect growth rates to environmen-
tal conditions. Since percentage changes in
X are changes in the natural logarithm of
X , population levels themselves are normally
distributed in this formulation. Thus, X is
bounded from below by zero, so that popu-
lation levels can never be negative. Another
important property of this process is that
short-run changes in X are dominated by
the volatility component of (2), whereas long-
run changes are more influenced by the trend
component.
For our purposes, it is important to char-

acterize the insect population at some future
date t. If the farmer does not use the pesti-
cide, the distribution of the insect population
at time t is obtained by applying Ito’s lemma
to equation (2) to obtain the following:

Xt ∼ LN
[
X0e

αt�X 2
0 e

2αt
(
eσ2t − 1

)]
(3)

where X0 denotes the initial insect popula-
tion and Xt denotes the insect population at
time t.
In the following section, it will prove use-

ful to know the distribution of insects at har-
vest time, H , taken prior to the pre-harvest
interval, or at date H -PHI. This distribution
follows directly from (3) as

Xt ∼ LN
[
X0e

αPHI�X 2
0 e

2αPHI(4)

×
(
eσ2PHI − 1

)]
�

For the remainder of this paper, X0
denotes the insect population at time H -PHI.
Equation (4) will now be used to derive
a grower’s chemical application rule condi-
tional on his observation of the initial insect
population.

Optimal Chemical Application

This section derives a farmer’s decision rule
for pesticide use. The basic structure of the
pesticide application decision is straightfor-
ward: apply the pesticide or not at date

H -PHI.3 Denote the effectiveness of the pes-
ticide as (1−µ), so that the insect population
after application is µX0.
The decision rule is best understood as

a locus of parameter values for which the
farmer is indifferent between using the pesti-
cide or not. This locus is derived by equating
expected profit levels with and without appli-
cation of the pesticide. There are two damage
probabilities of interest in the derivation of
these expected profit levels, one that attains
if the farmer applies the pesticide, and one
that attains if he does not. Let DNA denote
the probability that XH > XG if the farmer
does not apply the insecticide, conditional on
government regulations (e.g., product mar-
ketability, pesticide cost, and the length of
the PHI), the initial insect population, and
expected population growth rates. Similarly,
the probability that the insect population at
harvest exceeds the marketability standard if
the farmer does apply the insecticide is DA.
Equating expected profits with and with-

out pesticide application, it follows that the
threshold level of the insect population above
which the farmer will apply the pesticide,
X̃ , is defined implicitly by the following
equation:

DA + m

PY
= DNA�(5)

This decision rule is used to describe how
the farmer’s pesticide application decision is
altered by changes in the policy parameters.
Before proceeding, note that this basic

framework can be extended to the situation
where the farmer is choosing between two
chemical alternatives, as opposed to the case
considered in (5) where the choice is between
a single pesticide and no treatment at all. It
is straightforward to show that (5) becomes

(5′) D1 + m1

PY
= D2 + m2

PY

where the subscripts 1 and 2 denote the two
alternative chemicals. As expected, pesticide
choice hinges critically on relative effective-
ness and relative cost. Since the empirical
example presented later is captured by (5),
we will pursue this formulation; note, how-

3 This formulation assumes that the PHI constraint is binding.
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ever, that many of the analytical results
derived later go through with only obvious
modifications if (5’) is used.

Comparative Statics

Consider first the marginal effect of chang-
ing the pre-harvest interval. Totally differen-
tiating (5) and applying the Implicit Function
Theorem yields

dX̃

dPHI
= −

∂DNA

∂PHI
− ∂DA

∂PHI
∂DNA

∂X̃
− ∂DA

∂X̃

�(6)

As we demonstrated in the section on insect
population growth, the insect population at
harvest time is distributed lognormally.When
the farmer applies the pesticide, the number
of insects at harvest is distributed as

XH ∼ LN
[
µX0e

αPHI�(7)

µ2X 2
0 e

2αPHI
(
eσ2PHI − 1

)]
�

Recognizing that Pr(XH > XG) = Pr(ln
XH > lnXG), we convert the damage prob-
abilities into z-scores utilizing the following
relationship: D = 1 − �(z), where � is
the standard normal distribution and z is a
z-score. Given pesticide application, the z-
score is

zA = lnXG − µX0e
αPHI√

µ2X 2
0 e

2αPHI
(
eσ2PHI − 1

) �(8)

Similarly, the z-score for the insect population
at harvest given no pesticide application is

zNA = lnXG − X0e
αPHI√

X 2
0 e

2αPHI
(
eσ2PHI − 1

) �(9)

For simplicity, consider the case where the
pesticide is fully effective, or µ = 0. The com-
parative static results below go through with
only obvious modifications if µ is positive.
If a grower applies the pesticide in the full-
effectiveness case, then all the mass of the
population density is concentrated at 0 and

the derivative (6) can be rewritten as

dX̃

dPHI
= −

∂zNA
∂PHI
∂zNA

∂X̃

�(10)

Taking the relevant derivatives and manipu-
lating yields the following expression:

dX̃

dPHI
= −αX̃(11)

+1
2

X̃σ2
(
X̃eαPHI− lnXG

)
lnXG

(
eσ2PHI− 1

) �

A sufficient condition to sign the equation
above is for the expression in parentheses in
the numerator to be less than or equal to
zero. This condition implies a negative sign
for equation (11); i.e., increases in the pre-
harvest interval result in a decrease in the
critical population level, thus implying more
pesticide use. This result is worth emphasiz-
ing: it is possible that increases in the PHI,
which are designed to protect farmworkers,
may actually provide incentives for increased
pesticide application.
Given the importance of this result, it

is useful to examine this sufficient condi-
tion more carefully. The negativity condi-
tion amounts to a requirement that lnXG ≥
X0e

αPHI. Noting that lnXG is the transformed
government marketability standard and that
X0e

αPHI is the mean value of the insect popu-
lation at harvest time, it follows that this con-
dition will be satisfied when a farmer expects
to meet the marketability standard without
pesticide application. Equivalently, this con-
dition holds when the probability of crop fail-
ure is less than or equal to one-half.
Alternatively, increasing the PHI could

result in less pesticide application if lnXG ≤
X0e

αPHI and the second term in expression
(11) is greater in absolute magnitude than the
first term. By similar logic, a necessary but
not sufficient condition for this occurs when
the probability of crop failure is greater than
one-half.
The basic intuition behind these results

hinges on the fact that, conditional on some
initial insect population, lengthening the pre-
harvest interval increases both the mean and
the variance of the insect population at har-
vest. Thus, when there is only a “slight”
chance of failing to meet the marketability
standard, an increase in the mean and vari-
ance is undesirable and induces more pesti-
cide applications. However, when the chance
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of failing to meet the regulations is “large,”
increases in the variance of the insect popula-
tion (more specifically increasing the variance
faster than the mean) may increase the possi-
bility of meeting the standard and result in a
reduction of pesticide applications. Therefore,
the ultimate impact of pre-harvest interval
regulation on pesticide applications remains
an open, empirical question.
Similar methods can be used to show how

the farmer’s pesticide application decision
changes with respect to the other government
policy variables. For example, the change in
the threshold level of insects as the cost of
pesticides changes, for example through a
pesticide tax, is

dX̃

dm
= X̃ 2eαPHI

√
eσ2PHI − 1

PY lnXGϕ(zNA)
(12)

where ϕ(zNA) is the standard normal density
evaluated at zNA. It is clear that expression
(12) is positive. Thus, an increase in pesticide
costs increases the threshold pest population
size above which it is optimal to apply pesti-
cides, thereby confirming that pesticide use is
decreasing in the cost of pesticides.
It is also interesting to examine how

changes in the marketability standard affect
the incentives for pesticide use and worker
health levels. Given some fixed price of
output, relaxing the marketability standard
would clearly reduce the amount of pesticide
use. However, it is unlikely that output price
would remain fixed if the number of insects
present at harvest were increased. A full
understanding of how product quality stan-
dards affect pesticide use therefore requires
specification of a hedonic demand function. It
seems clear, however, that the effect of prod-
uct quality on price would reinforce the pure
effect of the marketability standard on pes-
ticide use. Lowering the net price received
by farmers for the crop further reduces the
incentive to use pesticides. Consumers suffer
in this case, however, since they value product
quality and a reduced price of output simply
reflects their diminished marginal valuation
of the crop output.

The Health Risk Generation Process

In order to assess the effectiveness of pes-
ticide regulation, we must first define the
health risk generation process. The magni-
tude of health risk in a population of workers

is defined as the probability of manifest-
ing a physical ailment as a result of contact
with a toxic substance used in the workplace.
If there is a pre-existing incidence of this ail-
ment in the population, then risk refers to the
incremental risk incurred by human exposure
to the contaminant. Health risk is most com-
monly represented as the product of three
basic risk factors: (a) ambient contamination,
(b) human exposure, and (c) the manifesta-
tion of physical symptoms, termed the dose–
response relationship.
This multiplicative formulation is reason-

able when the increased risk is relatively
small, and is particularly germane to cases
where there is pre-existing background risk
(Van Ryzin, Crump and Howe, Krewski and
Van Ryzin). In order to analyze the impacts
of government policies on health risk, it
is convenient to work with the following
relationship:

R(m�PHI) = C(m�PHI) · E(PHI) · D(13)

where R is health risk, C is contamination
(or deposited pesticide residue), E is expo-
sure, and D is the dose–response parameter.
Note that since the dose–response parameter
simply maps exposure to illness, it is affected
by physiology and not policy choices.
In this paper, we will largely confine our-

selves to the problem of protecting harvest
worker health. It is straightforward to apply
the basic framework to other target popu-
lations including pesticide applicators, irriga-
tion workers, and farmers themselves. There
are numerous policies designed to improve
farmworker health, including posting and
training regulations, protective clothing, and
protective equipment regulations (Sunding
and Zivin). As mentioned earlier, in this
paper we limit attention to two policies: the
pre-harvest interval and pesticide taxation.
Pesticide taxation is designed to change

the marginal incentives to use a toxic sub-
stance. To the extent that this regulation pro-
vides a marginal disincentive to use the toxic
material (through higher costs), use is dimin-
ished and workplace injuries are reduced. In
terms of the risk factors outlined in (14), tax-
ation reduces pesticide use but leaves expo-
sure unaffected. The pre-harvest interval reg-
ulation, by contrast, is primarily designed as
an exposure regulation.As the PHI is length-
ened, pesticides in the field have more time to
decay, ultimately reducing farmworker expo-
sure. However, our earlier economic analy-
sis shows that PHI regulation also alters the
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incentives for pesticide use by changing pes-
ticide productivity. Thus, in terms of equation
(14), PHI regulation affects both contamina-
tion and exposure. The net effect of these
impacts will be discussed in detail in a later
section.
The approach taken in this paper is pred-

icated on basic toxicology and is consistent
with risk assessment methods currently in
use in the United States and other coun-
tries. That is, the health effects of pesticide
use are supposed to result from the prod-
uct of total pesticide use, worker exposure to
the pesticide, and a dose–response, or toxic-
ity, parameter extrapolated from controlled,
replicable animal studies. There is some liter-
ature on pesticides and worker health in this
journal that takes a different approach. For
example,Antle and Pingali develop an econo-
metric model of pesticide use and farmer
health to measure the impacts of pesticide
use on health levels and the impact of health
on farm productivity in two regions of the
Philippines. They demonstrate that pesticide
use has a deleterious effect on farmer health
and that productivity is increasing in the
level of farmer health, implying that there
may well be social gains from reducing pes-
ticide use in this case study.4 The economet-
ric approach taken in their paper is a type
of epidemiological analysis that characterizes
the ex post statistical relation between health
levels and various environmental factors.
We adopt the toxicology approach in this

paper for several reasons. First, toxicology
methods are used by the U.S. EPA and
state agencies to set pesticide regulations.
Indeed, many of the basic parameters used
in our case study are taken directly from the
risk assessments performed by the State of
California prior to registration of the pes-
ticide that is the subject of our case study.
Clearly, if economic concepts are to be used
to influence risk regulation, it is impera-
tive that economists use similar methods and
data as the rest of the regulatory community.
Second, the epidemiological approach to risk
regulation, while interesting from an econo-
metric point of view, is out of favor with reg-
ulators for some valid reasons. Toxicological
analysis is based on laboratory experiments
and can thus be confirmed or denied in a sys-
tematic way. Epidemiological analysis is non-
replicable and subject to the usual problems

4 Other papers in this vein include Antle and Capalbo;
Crissman, Cole, and Carpio; and Pingali, Marquez, and Palis; as
well as the volume edited by Warborton, Pingali, and Palis.

of measurement error (e.g., under-reporting
of injury) and misspecification of the underly-
ing econometric model. Third, it is impossible
to use an econometric model to examine
the effects of changing PHI if there are no
observed changes in this regulation in the
sample. In order to avoid these problems,
but most importantly to help build a bridge
between economics and the rest of the risk
regulation community, we adopt the toxicol-
ogy approach to modeling health impacts of
pesticide use.

Deposited Residue

In the context of pesticide application, it is
sensible to treat contamination as deposited
residue, defined as the amount of pesticide
present per unit of plant surface area at
the time of application. Deposited residue is
determined in part by the amount of pes-
ticide application, which is in turn affected
by the marginal productivity of the pesticide.
Deposited residue (or contamination, C) is
the product of the share of acres treated with
the pesticide (RS), the amount of the chem-
ical used per acre treated (a) and a crop-
specific coefficient (v) that converts per-acre
application into deposited residue. Formally,
C(m�PHI) = RS(m�PHI) · a · v .
Recall from the discussion on profit-

maximizing pesticide application that a
farmer will apply the pesticide if the num-
ber of insects exceeds some threshold level.
Denote the probability density of the initial
insect population across fields in a defined
region as f(x). The regional share of acres on
which the pesticide is used, RS, is the prob-
ability that the initial insect population on a
given plot will exceed the threshold popula-
tion Xc . Formally, then,

RS(m�PHI) =
∫ ∞

X̃ (m�PHI)
f(X) dX�(14)

This coefficient measures the probability that
a randomly selected acre will be treated with
the pesticide.
The coefficients a and v are exogenous, and

are invariant with respect to the length of
the pre-harvest interval. The amount of pes-
ticide applied per acre, a, is specified on the
product label, typically in terms of pounds of
active ingredient per acre. The coefficient v
maps pounds of chemical per acre into micro-
grams per square centimeter of surface area.
This coefficient reflects the fact that only a
fraction of all applied pesticides ends up as
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deposited foliar residue that harvest workers
can contact (Zweig, Leffingwell, and Popen-
dorf), and is heavily influenced by plant shape
and size.

Exposure

Harvest worker exposure to the pesticide is
given as

E(PHI) = q · e−kPHI(15)

where k is a residue decay parameter and q
is an exposure coefficient. Exposure is mea-
sured in units of square centimeters of plant
surface area per kilogram of body weight
per day. The decay parameter converts units
of deposited residue at the time of applica-
tion into units of pesticide residue at har-
vest time, reflecting the fact that PHIs are
primarily designed to give pesticides time to
“cool down” before they are encountered by
harvest workers. The decay parameter is a
function of the type of pesticide applied, and
may also be influenced by weather conditions
such as humidity, temperature, and rainfall
(Popendorf and Leffingwell).
The coefficient q in equation (15) simply

denotes the amount of plant surface area
that a worker contacts while on the job. The
type of job performed by the worker influ-
ences this coefficient. For example, harvest
workers have more exposure to plant sur-
faces than installers of irrigation equipment.
The coefficient q is also heavily influenced by
workplace safety measures such as manda-
tory protective clothing (Sunding and Zivin).
For the sake of clarity, it is wise to review

the units in which contamination and expo-
surearemeasured.Contamination isexpressed
in terms of µg/cm2, exposure is measured as
cm2/kg/day. Thus, the product of contamina-
tion and exposure has units of µg/kg/day. This
measure conforms to the toxicological notion
of an average daily dose, which is standard
in the scientific literature. The dose–response
parameter, denoted D in equation (14), maps
average daily dose into numbers of acute poi-
soning cases. The dose–response relationship
is fundamental to modern toxicology, and
dose–response parameters are readily avail-
able for most pesticides.
Written in full, the health risk equation is

as follows:

R(m�PHI) = RS(m�PHI) · a · v · q(16)

· e−kPHI · D�

A marginal increase in the pesticide tax
unambiguously reduces the number of poi-
sonings; deposited residue is reduced while
exposure is unaffected. The marginal impact
of lengthening the PHI is less certain theoret-
ically since deposited residue may increase,
although exposure must decrease. In any case,
it is necessary to compute the effects of the
PHI on both contamination and exposure to
develop a true measure of health impacts.
Before proceeding, it is important to point

out that most of the parameters of (16)
will, in reality, only be known with some
error, even though our analysis treats all
these factors as known. Given the relatively
undeveloped state of the interval regula-
tion literature and the fact that we wish to
emphasize how PHIs alter economic incen-
tives for pesticide use, our treatment seems
reasonable. In other applications, however,
it will be important to account for this
parameter uncertainty.At least two economic
studies have identified methods for deal-
ing with this problem when making envi-
ronmental health regulations (Lichtenberg
and Zilberman; Lichtenberg, Zilberman, and
Bogen). As these papers indicate, parameter
uncertainty will influence policy choices if the
regulator is risk averse or if the risk factors
are covariant (as may be the case if a number
of them are affected by weather).

Case Study: Mevinphos Application in
California’s Salinas Valley

This section presents an application of the
conceptual model to a specific case of worker
protection regulation: farm worker poison-
ing from the pesticide mevinphos used on
leaf lettuce in California’s Salinas Valley, a
prime vegetable-producing region located on
the central coast of the state. Mevinphos (2-
carbomethoxy-1-methylvinyl dimethyl phos-
phate) is an organophosphate insecticide
used on a variety of crops, mainly vegetables.
In California, mevinphos is applied primar-
ily to head lettuce, leaf lettuce, cauliflower,
broccoli, and celery. Mevinphos is a foliar
insecticide used primarily to control aphids,
although it is also effective against mites,
grasshoppers, cutworms, leafhopper caterpil-
lars, and other insects. The pesticidal activity
of mevinphos is due to its inhibition of acetyl-
cholinesterase activity.5

5 Cholinesterases are a family of enzymes found throughout
the body that hydrolyze choline esters. In the nervous sys-
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There are numerous reported cases of
worker poisoning involving mevinphos, most
resulting from acute exposure. Indeed, mev-
inphos is responsible for more acute ill-
ness than any other insecticide currently
in use (California Environmental Protection
Agency 1996). The principal symptoms of
mevinphos poisoning are nausea, diarrhea,
vomiting, pinpoint pupils, tremors, and, in
extreme cases, paralysis. Mevinphos is not
known to be carcinogenic and is not believed
to cause reproductive or developmental tox-
icity. In California, there were 548 reported
cases of acute mevinphos poisoning involv-
ing farm workers from 1982 to 1991. There
were sixty-eight cases involving one or more
days of hospitalization and 201 cases involv-
ing one or more lost sick days during this
period (O’Malley).
We now turn to a description of the data

used to quantify the model in the case study.
First consider parameters of the stochastic
process describing the evolution of the insect
population. In the theoretical discussion of
the previous section, it was assumed that
the insect population level (aphids in our
case study) followed a GBM process. This
assumption is especially appropriate for the
case study chosen here. Recall that the GBM
process is tantamount to assuming normally
distributed population growth. Ruggle and
Gutierrez show that the green peach aphid
growth rate is linear in average daily temper-
ature, and is given by the formula:

% daily growth
= −53�48+ 1�11

∗ average daily temperature.

Further, average daily temperature is nor-
mally distributed. Combining these two rela-
tionships, it follows that the percentage
growth rate of the aphid population is nor-
mally distributed in the case study situation,
just as assumed by the GBM framework.
To find the parameters of equation (2), it

is helpful to rearrange this expression. This
difference equation implies that

Xt+1 − Xt = αXt + σXtεt

tem, acetylcholinesterase (AChE) is involved in the termina-
tion of impulses across nerve synapses including neuromuscular
junctions by rapidly hydrolyzing the neural transmitter acetyl-
choline. Inhibition of AChE results in overstimulation followed
by depression or paralysis of the cholinergic nerves throughout
the central and peripheral nervous systems (California Environ-
mental Protection Agency 1994).

or that

Xt+1 − Xt

Xt

= α + σεt�(17)

This expression implies that the percentage
change in the aphid population is equal to
an average growth rate plus a variance term,
and that the estimates of α and σ are sim-
ply the sample mean and standard deviation.
Utilizing the fact that the mean and standard
deviation of average daily June temperatures
in the Salinas Valley are 58.98 and 10.38
(National Oceanic and Atmospheric Admin-
istration), it follows that α = 0�1199 and
σ = 0�1152.
In order to describe the mevinphos appli-

cation decision, it is also necessary to gather
some information on leaf lettuce produc-
tion in the Salinas Valley. Estimates of out-
put price and per acre yields are based
on averages calculated from eight years of
data presented in the Monterey County Agri-
cultural Commissioner’s Reports (1989–96).
Mean yield is 791.12 cartons per acre and
mean farm gate price is $6.71 per carton.
Pre–harvest production costs (excluding the
cost of mevinphos application) are taken
from University of California Extension crop
budgets and are set at $1,590.09 per acre.
Contracted harvesting costs are $3.50 per
carton (University of California Cooperative
Extension). These cost figures imply a net
price of $1.20 per carton of lettuce. The cost
of mevinphos application is $50 per acre
(Chaney). Total acreage of leaf lettuce in
the Salinas Valley is set at 19,000 (Monterey
County Agricultural Commissioner).
Lastly, the quantification of the application

decision in equation (5) requires specifica-
tion of status quo policy parameters. In par-
ticular, it is necessary to know current pre-
harvest interval regulation and marketability
standards for leaf lettuce. Initially, the pesti-
cide tax is set at zero, so the cost of applica-
tion is simply its market price. The state pre-
harvest interval for mevinphos used on leaf
lettuce is presently seven days (California
Environmental Protection Agency 1994). A
carton of lettuce (composed of twenty-four
heads) is deemed unacceptable if more than
three heads contain insect defects, where an
insect defect is defined as any head contain-
ing five or more aphids (Chaney). Thus, we
set the government marketability standard at
fifteen aphids per carton, or 11,866.80 aphids
per acre.
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Given this basic biological and economic
information, it is possible to determine an
individual farmer’s application decision con-
ditioned on an initial aphid population [see
equation (5)]. Recall that for an individ-
ual farmer, this decision is a discrete choice:
apply the pesticide or not given the ini-
tial aphid population. Using equation (5)
and retaining the assumption that µ = 0
(Chaney), the critical initial aphid population
is 614.85 per acre; that is, a farmer will apply
mevinphos if he observes an aphid popula-
tion above this level. Table 1 summarizes the
exogenous parameters underlying the case
study, as well as the endogenous values of the
critical aphid population, the share of fields
treated with mevinphos, and the number of
harvest worker poisonings.

Table 1. Key Parameters of the Case Study

Exogenous Value

P: net price 1�20
($/carton)
Y: yield 791�12
(cartons/acre)
m: pesticide cost 50
($/acre)
α: intrinsic growth rate 0�1199
σ : variance of growth rate 0�1152
XG : quality threshold 11�866�80
(aphids/acre)
PHI 7
(days)
Mean aphids/acre 1�265�80
S.D. aphids/acre 967�17
a · v: deposited residue 0�0660
µ(g/cm2)
q: exposure coefficient 13�6300
(cm2/kg)
k: residue decay 0�0720
(µg/cm2/day)
Bodyweight 70
(kg)
Crew size 60
(people)
Time to harvest an acre 8
(hours/crew)
Acres 19�000
D: dose–response 3�85E-05

Endogenous Value
X̃ : application threshold 614�85
(aphids/acre)
RS: share of acres treated 0�7512
R: poisonings 17�9176
(cases)

To address aggregate mevinphos appli-
cation under some configuration of policy
parameters, it is necessary to know the occur-
rence of aphids across fields in the Sali-
nas Valley. As part of a pest management
study, the University of California Coopera-
tive Extension office in Salinas has been col-
lecting data on aphid populations on com-
mercially farmed leaf lettuce plots in the
region. We obtained data on aphid popula-
tion levels from ninety plots farmed using
standard (i.e., non-IPM) methods observed
prior to June harvest. The aphid population
level per acre is normally distributed with
a mean of 1,265.79 and a standard devia-
tion of 965.17. Given a PHI of seven days, it
follows that the probability that a randomly
selected field will be treated with mevinphos
is Pr(X ≥ 614�85) = 0�7512, or 75.12%. This
figure corresponds closely to the actual appli-
cation rate of 74.57% of leaf lettuce acres in
the Salinas Valley (California Environmental
Protection Agency 1998).
We now turn to the parameters of the

health risk generation process. Consider first
the deposited residue or contamination com-
ponent of the process. Deposited residue
is the product of the application share,
the amount of active ingredient applied
per acre, and the foliar residue coefficient.
The approved rate of mevinphos application
stated on the label is 0.25 pounds per acre.
Field studies by Spencer et al. demonstrate
that mevinphos application on leaf lettuce
at the prescribed rate results in an initial
deposited foliar residue of 0.066 µg/cm2.
As discussed earlier, exposure is based on

values of q and k, and the length of time
between application and exposure. In theory,
the decay parameter k can be affected by
weather conditions such as rainfall and tem-
perature (Spear et al., Nigg et al.). However,
Spencer et al. have demonstrated that for
many vegetable crops produced under vary-
ing weather conditions in California, includ-
ing leaf lettuce in the Salinas Valley, the mev-
inphos decay coefficient is in fact constant at
k = 0�072 µg/cm2/day.
The exposure parameter q is a function

of some crop-specific dosing coefficient6 that

6 This coefficient varies by task and also according to protec-
tive clothing and equipment regulations. Typically, this dosing
coefficient is broken down into a transfer component and an
absorption component. Transfer components are often expressed
as a clothing penetration measure or as an inhalation uptake,
depending on the route of contact, and vary by type of cloth-
ing and equipment (see for example Fong, Brodberg, and Fong;
Maddy et al.; Brodberg and Sanborn). Absorption coefficients
are generally extrapolated from toxicological studies conducted
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Table 2. Marginal Impacts of Policy Reforms

Policy Change

dm dPHI

Marginal Change in:
Application threshold dX̃ 8�97 × E-4 −0�11
Application share dRS −1�70 × E-4 0�02
Contamination dC −1�12 × E-5 1�39 × E-3
Exposure dE 0 −0�59
Poisonings dR −4�06 × E-3 −0�79
Expected profit dEπ −14�273 −1�45 × E6

Lost expected profit
per poisoning averted dE�/dR 3�51 × E6 1�84 × E6

relates the amount of active ingredient con-
tacted to an hourly dose of poison, as well as
certain worker characteristics, including the
duration of contact and worker body weight.
We assume that a workday consists of one
eight-hour shift and that each worker has
a body weight of 70 kg. Further, Formoli,
Thongsinthusak, and Sanborn estimate the
crop-specific dosing coefficient for mevinphos
use in leaf lettuce to be 119.28 cm2/hr. This
figure is based on the assumption that har-
vest workers wear the standard uniform of
long-legged pants, long-sleeved shirts, gloves,
and a hat. Thus, the exposure parameter q
for an individual harvester is 13.63 cm2/kg.
Recognizing that a sixty-person crew can har-
vest one acre of leaf lettuce in one eight-hour
workday (University of California Coopera-
tive Extension), we can calculate total worker
exposure per acre. As mentioned earlier the
pre-harvest interval for mevinphos used on
lettuce in Monterey County is seven days.
The dose–response relationship D is a bio-

logical relationship that maps the amount of
toxin taken up by an individual (i.e., the prod-
uct of contamination and exposure, or aver-
age daily dose) into a manifestation of clini-
cal symptoms requiring at least one lost day
of work. Typically, this relationship is deter-
mined by extrapolating from animal models
by adjusting for differences in body mass. Fol-
lowing O’Malley, we set D at 3�85× 10−5.
It is now possible to calculate the number

of poisonings predicted by the model. Muti-
plying the contamination parameter by the
exposure parameter and the dose–response
parameter, it follows that the predicted num-
ber of poisonings is 17.91 in the base case.

on laboratory animals, are specific to neither clothing nor equip-
ment, and vary by route of exposure.

Interestingly, this number corresponds closely
to the reported number of mevinphos poi-
sonings (17.78 cases) resulting from leaf let-
tuce harvest work.7 Thus, both the application
share (75.12%) and the number of poisonings
(17.91) predicted by the model correspond
closely to actual observations (74.57% and
17.78 cases, respectively).
Table 2 presents the results of the marginal

impact analysis based on the parameters per-
taining to the leaf lettuce case study. The sec-
ond column denotes the marginal change in
the threshold number of aphids above which
the farmer will apply mevinphos. As indi-
cated by expression (11), this threshold drops
as PHI increases. Consequently, as shown in
the third column, the fraction of growers
applying mevinphos increases by 2%. Thus,
increasing PHI increases contamination by
1.39 × E-3 µg/cm2, as shown in the fourth
column.
A marginal increase in the pesticide tax

has the opposite effect on contamination.The
second column of Table 2 shows the marginal
impact of increasing the per acre cost of
mevinphos on the application threshold. As
predicted by equation (12), this threshold is
increasing in the tax, which implies that RS
is decreasing in the tax. The fourth column
of the table shows the effect of an increase
in the tax on deposited residue. Increasing
the tax marginally reduces contamination by
1.12 × E-5 µg/cm2.
The exposure parameter is affected only

by the PHI. As discussed above, this effect is
unambiguous since increasing the PHI gives
the pesticide time to decay, which reduces

7 This latter figure is derived by multiplying the total number of
reported mevinphos poisonings (201) by the share of mevinphos
applied to leaf lettuce in the Salinas Valley (8.85%) (California
Environmental Protection Agency 1998).
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worker injury per unit of pesticide applica-
tion.Table 2 indicates that the marginal effect
of PHI on per acre exposure is equal to -0.59
µg/kg/day.
Next, we calculate the marginal impact of

the policy changes on the number of poi-
sonings. These calculations are given in the
sixth column of Table 2. The marginal effect
of the PHI on worker health is especially
interesting in this case study since we have
exactly the type of situation in which increas-
ing PHI can harm workers: namely, increasing
the PHI increases the incentives to use mev-
inphos. The empirical analysis shows, how-
ever, that the drop in exposure outweighs the
increase in contamination for the parameters
of this case study, and as a result the number
of mevinphos poisonings drops by 0.79 cases
in response to a unit increase in the PHI.
As expected, the pesticide tax also reduces
the number of poisonings; Table 2 indicates
that this marginal change is small (4.06 × E-
3 cases). This latter result follows from the
small impact of the tax on deposited residue
(which follows from the modest marginal
impact of a per acre tax on the percentage of
growers using the pesticide).
It is of interest to evaluate the change in

grower profit resulting from each of these
marginal reforms since understanding how
profit changes allows a comparison of policies
in terms of lost profit per poisoning averted.
Expected profit per acre is given as

E� =
∫ X̃

0
PY

(
1− DNA

)
f(X)dX(18)

+
∫ ∞

X̃
[PY(1− DA) − m]

f(X) dX�

Taking the derivative with respect to the pes-
ticide cost per acre, we have

∂E�

∂m
= −

∫ ∞

0
f(X) dX

+PY
(
1− DNAX̃

)∂X̃
∂m

f(X)

−[PY(1− DA(X̃ )) − m]

× ∂X̃

∂m
f(X)�

Using the definition of the critical insect pop-
ulation, it follows that marginal lost profit per
acre is given by

∂E�

∂m
= −[1− F(X̃)]�(19)

Similar analysis yields an expression for
the marginal change in profit as PHI and the
marketability standard increase. Taking the
derivative of (19) with respect to PHI, we
have

∂E�

∂PHI
= −

∫ X̃

0
PY

∂DNA

∂PHI
f(X) dX

−
∫ ∞

X̃
PY

∂DA

∂PHI
f(X) dX

making use of Leibniz’ Rule and the defini-
tion of X̃ . This derivative can be expressed as

∂E�

∂PHI
=

∫ X̃

0
PY ϕ(zNA)

∂zNA
∂PHI

f(X) dX(20)

+
∫ ∞

X̃
PY ϕ(zA)

× ∂zA
∂PHI

f(X) dX < 0�

Table 2 shows the marginal change in
grower profit and also the change in profit
per poisoning averted. Increasing the PHI
has a significant impact on profit since the
probability of crop damage increases for all
growers using mevinphos. The pesticide tax
has a much smaller impact on profit since
it does not affect expected crop damage at
the margin. It is most interesting to consider
the profit impact per poisoning avoided. The
PHI is nearly twice as efficient as the pes-
ticide tax by this measure, despite the fact
that lengthening the PHI increases aggregate
mevinphos use. Increasing the PHI reduces
grower profit by $1.84 million per poisoning
averted, while the pesticide tax lowers grower
profit by $3.51 million per case.The basic rea-
son for this disparity in our case study is the
sensitivity of exposure to changes in the PHI.

Conclusions

This paper presents an explicit model of
insect population dynamics and employs it to
measure pesticide productivity, derive profit-
maximizing pesticide application levels, and
assess the impact of regulations intended to
reduce worker pesticide poisonings. A main
result of our conceptual analysis is that pre-
harvest interval regulation affects both con-
tamination and exposure, perhaps in opposite
directions. Pesticide taxation unambiguously
reduces the incidence of poisoning.
Regulators typically set pre-harvest inter-

vals to separate farmworkers from health
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hazards by increasing the time between pes-
ticide application and exposure. The intent
of increasing this interval is to allow more
time for the pesticide to decay. Our paper
shows that increasing the pre-harvest inter-
val may increase the incentive for pesticide
use, thereby resulting in reduced exposure
but increased contamination. The impact of
PHI regulation on pesticide use levels should
be factored in to regulatory impact analyses
rather than assuming that contamination is
constant, as is typically the case.
It is important for economists to pay

attention to insect population dynamics
when assessing pesticide productivity and the
impact of pesticide regulations, particularly
regulations like the PHI that alter the timing
of pesticide use. Without these dynamics, the
pesticide use decision can only be motivated
by the prevailing conditions at the time of
application, and misses an important dimen-
sion of the pesticide problem. Our hope is
that more economists will work with ento-
mologists and other specialists to create even
more elaborate and accurate models of insect
population growth and develop solid micro-
foundations for the economics of pesticide
regulation.
Future work should also focus on the

multiplicity of regulatory instruments and
how these can be combined most effec-
tively to reduce the adverse public health
consequences of pesticide use. There are
many more potential interventions than the
three considered here; training, posting, label-
ing, and protective equipment regulations
are only a few examples. Given the likely
decreasing marginal benefits of each regula-
tion, it seems likely that a combination of
instruments will be optimal in many cases.

[Received May 1998;
accepted October 1999.]
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